Skip to main content
Log in

Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Huperzine A is isolated from Huperzia serrata and is used for treatment of Alzheimer’s disease, due to its low toxicity and long effective period. The decrease in H. serrata sources means that natural huperzine A cannot meet the needs of clinical therapy. In this study, >200 endophytic fungal strains were isolated from H. serrata, and screened using high-performance liquid chromatography. Strain ES026 produced huperzine A. Production was identified and quantified by liquid chromatography–tandem mass spectrometry, and the yield of huperzine A was 1 μg/g dried mycelium. ES026 strain was identified as Colletotrichum gloeosporioides by morphology, polymerase chain reaction with species-specific primers and rDNA internal transcribed spacer sequence. ES026 contributes to the breeding of cultivated strains with high yield of huperzine A. Meanwhile, the strain was suitable for the study of biosynthesis of huperzine A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth GC (2008) Ainsworth & Bisby’s dictionary of the fungi. Cabi, Wallingford

  • Bahrani H, Mohamad J, Paydar M, Rothan HA (2014) Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer’s disease (AD). Curr Alzheimer Res 11:206–214

    Article  CAS  Google Scholar 

  • Chitra L, Kumar CR, Basha HM, Ponne S, Boopathy R (2013) Interaction of metal chelators with different molecular forms of acetylcholinesterase and its significance in Alzheimer’s disease treatment. Proteins: structure. Funct Bioinform 81:1179–1191

    Article  CAS  Google Scholar 

  • Ding R, Sun B-F, Lin G-Q (2012) An efficient total synthesis of (−)-huperzine A. Org Lett 14:4446–4449

    Article  CAS  Google Scholar 

  • Dong L-H, Fan S-W, Ling Q-Z, Huang B-B, Wei Z-J (2014) Identification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J Microbiol Biotechnol 30:1011–1017

    Article  CAS  Google Scholar 

  • Freeman S, Minz D, Jurkevitch E, Maymon M, Shabi E (2000) Molecular analyses of Colletotrichum species from almond and other fruits. Phytopathology 90:608–614

    Article  CAS  Google Scholar 

  • Goodger JQ, Whincup AL, Field AR, Holtum JA, Woodrow IE (2008) Variation in huperzine A and B in Australasian huperzia species. Biochem Syst Ecol 36:612–618

    Article  CAS  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  CAS  Google Scholar 

  • Jiang H, Luo X, Bai D (2003) Progress in clinical, pharmacological, chemical and structural biological studies of huperzine A: a drug of traditional chinese medicine origin for the treatment of Alzheimers disease. Curr Med Chem 10:2231–2252

    Article  CAS  Google Scholar 

  • Jia-Sen L, Chao-Mei Y, You-Zuo Z, Yan-Yi H, Feng-Wu W, Bao-Feng Q, Yuan-Long Z (1986) Study on the chemistry of huperzine A and B. Acta Chim Sinica 10:012

    Google Scholar 

  • Ju Z, Wang J, S-l PAN (2009) Isolation and preliminary identification of the endophytic fungi which produce huperzine A from four species in hupziaceae and determination of huperzine A by HPLC. Fudan Univ J Med Sci 4:017

    Google Scholar 

  • Koshiba T, Yokoshima S, Fukuyama T (2009) Total synthesis of (−)-huperzine A. Org Lett 11:5354–5356

    Article  CAS  Google Scholar 

  • Koshiba T, Yokoshima S, Fukuyama T (2014) Correction to total synthesis of (−)-huperzine A. Org Lett 16:1273

    Article  Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Article  CAS  Google Scholar 

  • Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. InTech 241–266. ISBN 978-953-51-0046-1

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Article  CAS  Google Scholar 

  • Lalwani A, Paul S, Ahmed I, Ramanathan K (2014) Potential inhibitors against acetylcholinesterase and glutathione S-transferase associated with alzheimer’s disease. J Chem & Pharm Res 6:1527–1532

    CAS  Google Scholar 

  • Li W, Zhou J, Lin Z, Hu Z (2007) Study on fermentation condition for production of huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chin Med Biotechnol 2:254–259

    Google Scholar 

  • Lim W-H, Goodger JQ, Field AR, Holtum JA, Woodrow IE (2010) Huperzine alkaloids from Australasian and southeast Asian huperzia. Pharm Biol 48:1073–1078

    Article  CAS  Google Scholar 

  • Ma X, Gang DR (2004) The lycopodium alkaloids. Nat Prod Reports 21:752–772

    Article  CAS  Google Scholar 

  • Ma X, Tan C, Zhu D, Gang DR (2005) Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of huperziaceae species in China. J Agric Food Chem 53:1393–1398

    Article  CAS  Google Scholar 

  • Ma X, Tan C, Zhu D, Gang DR (2006) A survey of potential huperzine A natural resources in China: the Huperziaceae. J Ethnopharmacol 104:54–67

    Article  CAS  Google Scholar 

  • Mak S, Luk WW, Cui W, Hu S, Tsim KW, Han Y (2014) Synergistic Inhibition on acetylcholinesterase by the combination of berberine and palmatine originally isolated from Chinese medicinal herbs. J Mol Neurosci 53:511–516

    Article  CAS  Google Scholar 

  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  CAS  Google Scholar 

  • McKinney M, Miller JH, Yamada F, Tuckmantel W, Kozikowski AP (1991) Potencies and stereoselectivities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur J Pharmacol 203:303–305

    Article  CAS  Google Scholar 

  • Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V (2013) Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr Neuropharmacol 11:388–413

    Article  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves In: microbial ecology of leaves. Springer, Berlin, pp 179–197

    Google Scholar 

  • Qian L, Ji R (1989) A total synthesis of (±)-huperzine A. Tetrahedron Lett 30:2089–2090

    Article  CAS  Google Scholar 

  • Rosini M, Simoni E, Minarini A, Melchiorre C (2014) Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem Res. doi:10.1007/s11064-014-1250-1

  • Russo P, Frustaci A, Del Bufalo A, Fini M, Cesario A (2013) From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: acetylcholinesterase inhibitors. Curr Med Chem 20:976–983

    CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Shi-lu Z (1986) Therapeutic effects of huperzine A on the aged with memory impairment Chinese. J New Drugs Clin Rem 5:001

    Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  Google Scholar 

  • Strobel SA, Strobel GA (2007) Plant endophytes as a platform for discovery-based undergraduate science education. Nat Chem Biol 3:356–359

    Article  CAS  Google Scholar 

  • Strobel G, Stierle A, Stierle D, Hess W (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 47:71–80

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tun MKM, Wüstmann D-J, Herzon SB (2011) A robust and scalable synthesis of the potent neuroprotective agent (−)-huperzine A. Chem Sci 2:2251–2253

    Article  CAS  Google Scholar 

  • Wang Y, Yan R-M, Zeng Q-G, Zhang Z-B, Wang D, Zhu D (2011a) Producing huperzine A by an endophytic fungus from Huperzia serrata. Mycosystema 30:255–262

    Google Scholar 

  • Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011b) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38:1267–1278

    Article  CAS  Google Scholar 

  • White JD, Li Y, Kim J, Terinek M (2013) A novel synthesis of (−)-huperzine A via tandem intramolecular aza-prins cyclization-cyclobutane fragmentation. Org Lett 15:882–885

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos:274-276

  • Wu H, Zhuang P, FENG Z-B, ZHANG C, Jin C-W (2005) Resource investigation and assessment of Huperzia serrata. J Nat Resour 1:008

    Google Scholar 

  • Xia Y, Kozikowski AP (1989) A practical synthesis of the Chinese “nootropic” agent huperzine A: a possible lead in the treatment of Alzheimer’s disease. J Am Chem Soc 111:4116–4117

    Article  CAS  Google Scholar 

  • Yi SR, Shen ML, Pu SC, Deng CF, Huang Y (2003) Current research on cultivation technique of Chinese traditional medicinal plants. Res Pract Chin Med 17(4):7–11

    Google Scholar 

  • Zhang D, Yang Y, Castlebury LA, Cerniglia CE (1996) A method for the large scale isolation of high transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 145:261–265

    Article  CAS  Google Scholar 

  • Zhang Z, Wang X, Chen Q, Shu L, Wang J, Shan G (2002) Clinical efficacy and safety of huperzine alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial. Zhonghua yi xue za zhi 82:941–944

    CAS  Google Scholar 

  • Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces huperzine A. World J Microbiol Biotechnol 27:479–486

    Article  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    Article  CAS  Google Scholar 

  • Zhao X-M et al (2013) Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PloS One 8:e61777

    Article  CAS  Google Scholar 

  • Zhou Q (2007) There is urgent need to pay attention to the Alzheimer’s disease. Health Preserv 28(11):1020–1022

    Google Scholar 

  • Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109:1469–1478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lu Zheng of Huazhong Agricultural University for supplying the C. gloeosporioides standard strain and C. higginsianum strain. This research was supported by the National Natural Science Foundation of China (Grant No. 81202870) and the Ministry of Science and Technology of the People’s Republic of China through the Project of International Scientific and Technological Cooperation between China and South Korea (Grant No. 2011DFA31290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, S., Zhao, X., Wang, W. et al. Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30, 3101–3109 (2014). https://doi.org/10.1007/s11274-014-1737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1737-6

Keywords

Navigation