Skip to main content

Advertisement

Log in

Assessment of Upper Taylor Slough water quality and implications for ecosystem management in Everglades National Park

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

This study addresses water quality conditions across several distinct hydrologic regimes in the Upper Taylor Slough (UTS) region of Everglades National Park and briefly considers implications for long-term water quality management. Due to upstream changes in water delivery and construction of a detention area, Taylor Slough has experienced a significant change in hydrology over a 27-year period, progressing from direct discharge at varying amounts to sheet flow via groundwater conditions. Cumulative flow and rainfall relationships at the inflow and outflow of UTS demonstrate distinct break points. These changes in water delivery and subsequent upstream water management have resulted in a change in water quality conditions within the UTS region. Since 1986, total phosphorus (TP) flow-weighted mean concentrations exiting UTS have significantly decreased from 10 µg/L in the late 1980s to 4 µg/L or less since 2010. Based on analysis of surface water ion ratios, saltwater intrusion is unlikely and rather hyporheic exchange could be occurring between the inflow and outflow of the UTS region. Based on the analysis of existing water quality data, the UTS region is a resilient oligotrophic wetland system retaining strong assimilation capacity in the face of major management changes. While TP concentrations remain extremely low, restoration is not complete for Taylor Slough and adjacent coastal basins will inevitably bring additional nutrient loading. Management of the Slough should recognize this and consider what water quality condition is best for long-term sustainability of Taylor Slough’s ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armentano TV, Jones DT, Gamble B (1997) Recent patterns in the vegetation of Taylor Slough. Everglades National Park, Homestead

    Google Scholar 

  • Bearzotti R (1999) The Everglades Stormwater Program. In: Redfield G, Brooks G, Heitzmann M et al (eds) Everglades interim report, 1999th edn. South Florida Water Management District, West Palm Beach

    Google Scholar 

  • Beaver JR, Miller-Lemke AM, Acton JK (1998) Midsummer zooplankton assemblages in four types of wetlands in the Upper Midwest, USA. Hydrobiologia 380:209–220. doi:10.1023/A:1003452118351

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33. doi:10.1046/j.1365-2427.1997.00143.x

    Article  Google Scholar 

  • Bustamante MAO, Mier MV, Estrada JAE, Domíguez CD (2011) Nitrogen and potassium variation on contaminant removal for a vertical subsurface flow lab scale constructed wetland. Bioresour Technol 102:7745–7754. doi:10.1016/j.biortech.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Mendelssohn IA, Lorenzen B et al (2005) Growth and nutrient responses of Eloecharis cellulosa (Cyperaceae) to phosphate level and redox intensity. Am J Bot 92:1457–1466. doi:10.3732/ajb.92.9.1457

    Article  PubMed  Google Scholar 

  • Chen H, Ivanoff D, Pietro K (2015) Long-term phosphorus removal in the everglades stormwater treatment areas of South Florida in the United States. Ecol Eng 79:158–168. doi:10.1016/j.ecoleng.2014.12.012

    Article  Google Scholar 

  • Chimney MJ, Goforth G (2001) Environmental impacts to the Everglades ecosystem: a historical perspective and restoration strategies. Water Sci Technol 44:93–100

    CAS  PubMed  Google Scholar 

  • Chimney M (2015) Performance of the Everglades Stormwater Treatment Areas. In: 2015 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Diaz OA, Reddy KR, Moore PA Jr (1994) Solubility of inorganic phosphorus in stream water as influenced by pH and calcium concentration. Water Res 28:1755–1763. doi:10.1016/0043-1354(94)90248-8

    Article  CAS  Google Scholar 

  • Dierberg FE, DeBusk TA, Jackson SD et al (2002) Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading. Water Res 36:1409–1422

    Article  CAS  PubMed  Google Scholar 

  • Dunne EJ, Reddy KR (2005) Phosphorus biogeochemistry of wetlands in agricultural watersheds. Nutr Manag Agric Watersheds Wetl Solut Wagening Neth Wagening Acad Publ 105–119

  • Fan X, Gu B, Hanlon EA et al (2011) Investigation of long-term trends in selected physical and chemical parameters of inflows to Everglades National Park, 1977–2005. Environ Monit Assess 178:525–536. doi:10.1007/s10661-010-1710-2

    Article  CAS  PubMed  Google Scholar 

  • Fitterman DV, Deszcz-Pan M (2002) Geophysical mapping of saltwater intrusion in Everglades National Park. US Geological Survey

  • Florida Department of Environmental Protection (1991) 62-160 Florida administrative code: quality assurance

  • Gaiser EE, Trexler JC, Jones RD et al (2006) Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnol Oceanogr 51:617–630

    Article  CAS  Google Scholar 

  • Gaiser EE, Sullivan P, Tobias FAC et al (2014) Boundary Effects on benthic microbial phosphorus concentrations and diatom beta diversity in a hydrologically-modified, nutrient-limited wetland. Wetlands 34:55–64. doi:10.1007/s13157-013-0379-z

    Article  Google Scholar 

  • Giannimaras EK, Koutsoukos PG (1987) The crystallization of calcite in the presence of orthophosphate. J Colloid Interface Sci 116:423–430. doi:10.1016/0021-9797(87)90138-X

    Article  CAS  Google Scholar 

  • Gough LP, Kotra RK, Holmes CW et al (2000) Regional geochemistry of metals in organic-rich sediments, sawgrass and surface water, from Taylor Slough, Florida. United States Geological Survey, Reston

    Google Scholar 

  • Granéli W, Bertilsson S, Philibert A (2004) Phosphorus limitation of bacterial growth in high Arctic lakes and ponds. Aquat Sci 66:430–439. doi:10.1007/s00027-004-0732-7

    Article  Google Scholar 

  • Hagerthey SE, Newman S, Rutchey K et al (2008) Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecol Monogr 78:547–565

    Article  Google Scholar 

  • Hagerthey SE, Cook MI, Mac Kobza R et al (2014) Aquatic faunal responses to an induced regime shift in the phosphorus-impacted Everglades. Freshw Biol 59:1389–1405. doi:10.1111/fwb.12353

    Article  CAS  Google Scholar 

  • Hanlon EA, Fan XH, Gu B et al (2010) Water quality trends at inflows to Everglades National Park, 1977–2005. J Environ Qual 39:1724. doi:10.2134/jeq2009.0488

    Article  CAS  PubMed  Google Scholar 

  • House WA (2003) Geochemical cycling of phosphorus in rivers. Appl Geochem 18:739–748. doi:10.1016/S0883-2927(02)00158-0

    Article  CAS  Google Scholar 

  • House WA, Donaldson L (1986) Adsorption and coprecipitation of phosphate on calcite. J Colloid Interface Sci 112:309–324. doi:10.1016/0021-9797(86)90101-3

    Article  CAS  Google Scholar 

  • Iwaniec DM, Childers DL, Rondeau D et al (2006) Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades. Hydrobiologia 569:223–235. doi:10.1007/s10750-006-0134-z

    Article  CAS  Google Scholar 

  • Johnson W, Cole T, Johnson M et al (1979) Ion balance in water analyses—The Effect of added silica on the carbonate-bicarbonate titration. Mar Freshw Res 30:315–323

    Article  CAS  Google Scholar 

  • Johnson CR, Luecke C, Whalen SC, Evans MA (2010) Direct and indirect effects of fish on pelagic nitrogen and phosphorus availability in oligotrophic Arctic Alaskan lakes. Can J Fish Aquat Sci 67:1635–1648. doi:10.1139/F10-085

    Article  CAS  Google Scholar 

  • Josephson DC, Robinson JM, Lepak JM, Kraft CE (2012) Rainbow trout performance in food-limited environments: implications for future assessment and management. J Freshw Ecol 27:159–170. doi:10.1080/02705060.2012.657864

    Article  Google Scholar 

  • Julian P (2015) Appendix 3A-6: Water Year 2010-2014 annual total phosphorus criteria compliance assessment. In: 2015 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL

  • Julian P, Payne GG, Xue SK (2014) Chapter 3A: Water Quality in the Everglades Protection Areas. In: 2014 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL

  • Julian P, Payne GG, Xue SK (2015) Chapter 3A: Water Quality in the Everglades Protection Areas. In: 2015 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL

  • Junk WJ, Brown M, Campbell IC et al (2006) The comparative biodiversity of seven globally important wetlands: a synthesis. Aquat Sci 68:400–414. doi:10.1007/s00027-006-0856-z

    Article  Google Scholar 

  • Kadlec RH (1999a) The limits of phosphorus removal in wetlands. Wetl Ecol Manag 7:165–175

    Article  Google Scholar 

  • Kadlec RH (1999b) Response to the Richardson and Qian comments. Wetl Ecol Manag 7:239–245. doi:10.1023/A:1008438700723

    Article  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands. CRC Press, Boca Raton

    Google Scholar 

  • Keddy PA, Fraser LH, Solomeshch AI et al (2009) Wet and wonderful: the world’s largest wetlands are conservation priorities. Bioscience 59:39–51. doi:10.1525/bio.2009.59.1.8

    Article  Google Scholar 

  • King RS, Richardson CJ (2007) Subsidy–stress response of macroinvertebrate community biomass to a phosphorus gradient in an oligotrophic wetland ecosystem. J North Am Benthol Soc 26:491–508. doi:10.1899/06-002R.1

    Article  Google Scholar 

  • Kleiner J (1988) Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Res 22:1259–1265. doi:10.1016/0043-1354(88)90113-3

    Article  CAS  Google Scholar 

  • Koch MS, Reddy KR (1992) Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Sci Soc Am J 56:1492–1499

    Article  Google Scholar 

  • Kotun K, Renshaw A (2014) Taylor Slough hydrology: fifty years of water management 1961–2010. Wetlands 34:9–22. doi:10.1007/s13157-013-0441-x

    Article  Google Scholar 

  • Light SS, Dineen JW (1994) Water control in the everglades: a historical perspective. In: Davis S, Ogden J (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, pp 47–84

    Google Scholar 

  • Maie N, Yang C, Miyoshi T et al (2005) Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnol Oceanogr 50:23–35

    Article  CAS  Google Scholar 

  • Markogianni V, Dimitriou E, Karaouzas I (2014) Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications. Environ Monit Assess 186:5009–5026. doi:10.1007/s10661-014-3755-0

    Article  CAS  PubMed  Google Scholar 

  • Miao SL, Sklar FH (1997) Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetl Ecol Manag 5:245–264

    Article  Google Scholar 

  • Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4:603–624. doi:10.1007/s10021-001-0032-1

    Article  CAS  Google Scholar 

  • Osborne TZ, Bruland GL, Newman S et al (2011) Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environ Monit Assess 183:395–408. doi:10.1007/s10661-011-1928-7

    Article  CAS  PubMed  Google Scholar 

  • Osborne TZ, Reddy KR, Ellis LR et al (2014) Evidence of recent phosphorus enrichment in surface soils of Taylor Slough and northeast Everglades National Park. Wetlands 34:37–45. doi:10.1007/s13157-013-0381-5

    Article  Google Scholar 

  • Otsuki A, Wetzel RG (1972) Coprecipitation of phosphate with carbonates in a Marl Lake. Limnol Oceanogr 17:763–767. doi:10.4319/lo.1972.17.5.0763

    Article  CAS  Google Scholar 

  • Payne G, Bennett T, Weaver K (2002) Chapter 5: Development of a Numeric Phosphorus Criterion for the Everglades Protection Area. In: 2005 Everglades Consolidated Report. South Florida Water Management District, West Palm Beach, FL

  • Peña EA, Slate EH (2006) Global validation of linear model assumptions. J Am Stat Assoc 101:341–354. doi:10.1198/016214505000000637

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry W (2004) Elements of south Florida’s comprehensive Everglades restoration plan. Ecotoxicology 13:185–193

    Article  PubMed  Google Scholar 

  • Pollman CD, Landing WM, Perry JJ Jr, Fitzpatrick T (2002) Wet deposition of phosphorus in Florida. Atmos Environ 36:2309–2318

    Article  CAS  Google Scholar 

  • Price RM, Swart PK, Fourqurean JW (2006) Coastal groundwater discharge—an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569:23–36. doi:10.1007/s10750-006-0120-5

    Article  CAS  Google Scholar 

  • RECOVER (2007) Performance measure: greater Everglades wetlands basinwide total phosphorus loading and flow-weighted mean concentration in inflows. Evaluation team CERP systemwide performance measures

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Reddy KR, DeLaune RD, DeBusk WF, Koch MS (1993) Long-term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155

    Article  CAS  Google Scholar 

  • Reddy KR, Newman S, Grunwald S et al (2005) Everglades soil mapping final report. South Florida Water Management District, West Palm Beach

    Google Scholar 

  • Redfield GW (2002) Atmospheric deposition of phosphorus to the Everglades: concepts, constraints, and published deposition rates for ecosystem management. Sci World J 2:1843–1873. doi:10.1100/tsw.2002.813

    Article  Google Scholar 

  • Richardson CJ, Huvane JK (2008) Ecological status of the Everglades: environmental and human factors that control the peatland complex on the landscape. In: Richardson CJ (ed) The Everglades experiments: lessons for ecosystem restoration. Springer, New York

    Chapter  Google Scholar 

  • Richardson CJ, Qian SS (1999a) Comments: limits of phosphorus removal in wetlands (Kadlec, previous issue, pp. 165–175). Wetl Ecol Manag 7:235–238. doi:10.1023/A:1008488917561

    Article  Google Scholar 

  • Richardson CJ, Qian SS (1999b) Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environ Sci Technol 33:1545–1551. doi:10.1021/es980924a

    Article  CAS  Google Scholar 

  • Richardson CJ, Qian S, Craft CB, Qualls RG (1997) Predictive models for phosphorus retention in wetlands. Wetl Ecol Manag 4:159–175. doi:10.1007/BF01879235

    Article  Google Scholar 

  • Rose PW, Flora MD, Rosendahl PC (1981) Hydrologic impacts of L-31 W on Taylor Slough Everglades National Park. South Florida Research Center, Homestead

    Google Scholar 

  • Sadle J (2008) Summary of cattail encroachment in Taylor Slough. South Florida Natural Resource Center, Homestead

    Google Scholar 

  • Sah JP, Ross MS, Saha S et al (2014) Trajectories of vegetation response to water management in Taylor Slough, Everglades National Park, Florida. Wetlands 34:65–79. doi:10.1007/s13157-013-0390-4

    Article  Google Scholar 

  • Saha S, Bradley K, Heiden CV (2014) Changes in Taylor Slough vegetation from 1979 to 2010. The Institute for Regional Conservation, Delray Beach

    Google Scholar 

  • Saunders CJ, Gao M, Jaffé R (2014) Environmental assessment of vegetation and hydrological conditions in Everglades freshwater marshes using multiple geochemical proxies. Aquat Sci. doi:10.1007/s00027-014-0385-0

    Google Scholar 

  • Scheidt D, Kalla PI (2007) Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soil and habitat: monitoring for adaptive management: a R-EMAP status report. United States Environmental Protection Agency, Athens

    Google Scholar 

  • SFWMD (2009) 2007-08 Miami-Dade 5-ft DEM in NAVD 1988, Release Version 1

  • Shardendu RS (1991) Relationship of nutrients in water with biomass and nutrient accumulation of submerged macrophytes of a tropical wetland. New Phytol 117:493–500. doi:10.1111/j.1469-8137.1991.tb00013.x

    Article  CAS  Google Scholar 

  • South Florida Water Management District (2012) Restoration strategies regional water quality plan. South Florida Water Management District, West Palm Beach

    Google Scholar 

  • South Florida Water Management District (2016) South Florida environmental report. South Florida Water Management District, West Palm Beach

    Google Scholar 

  • Stewart MA, Bhatt TN, Fennema RJ, Fitterman DV (2002) The road to flamingo: an evaluation of flow pattern alterations and salinity intrusion in the lower glades, Everglades National Park. United States Geological Survey, Washington

    Google Scholar 

  • Stober QJ, Thornton K, Jones R et al (2001) South Florida ecosystem assessment: phase I/II Everglades stressor interactions: hydropatterns, eutrophication, habitat alteration, and mercury contamination. United States Environmental Protection Agency, Washington

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  • Sullivan PL, Gaiser EE, Surratt D et al (2014) Wetland ecosystem response to hydrologic restoration and management: the Everglades and its urban-agricultural boundary (FL, USA). Wetlands 34:1–8. doi:10.1007/s13157-014-0525-2

    Article  Google Scholar 

  • Surratt D, Shinde D, Aumen N (2012) Recent cattail expansion and possible relationships to water management: changes in upper Taylor Slough (Everglades National Park, Florida, USA). Environ Manag 49:720–733. doi:10.1007/s00267-011-9798-x

    Article  Google Scholar 

  • Trexler J, Loftus W, Bruno C (2003) Assessment of IOP/ISOP impacts on aquatic communities. In: Trexler J et al (eds) Monitoring fish and decapods crustaceans in the southern Everglades. Southeast Environmental Research Center and Department of Biological Sciences. Florida International University, Miami

    Google Scholar 

  • Turner AM, Trexler JC, Jordan CF et al (1999) Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conserv Biol 13:898–911

    Article  Google Scholar 

  • US EPA (1978) Method 310.0: alkalinity. US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA (1993) Method 300: determination of inorganic anions by ion chromatography. US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA (1994) Method 200.7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. US Environmental Protection Agency, Washington

    Google Scholar 

  • USACE, SFWMD (1999) Central and southern Florida project comprehensive review study

  • Vaithiyanathan P, Richardson CJ (1999) Macrophyte species changes in the Everglades: examination along a eutrophication gradient. J Environ Qual 28:1347–1358

    Article  CAS  Google Scholar 

  • Van Lent T, Johnson R, Fennema RJ (1993) Water management in Taylor Slough and effects on Florida Bay. National Park Service, South Florida Research Center, Everglades National Park, Homestead

    Google Scholar 

  • Vito M, Muggeo R (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25

    Google Scholar 

  • Wambeke FV, Obernosterer I, Moutin T et al (2008) Heterotrophic bacterial production in the eastern South Pacific: longitudinal trends and coupling with primary production. Biogeosciences 5:157–169

    Article  Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229:181–198. doi:10.1007/BF00007000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the South Florida Water Management District Everglades Assessment Unit and Water Quality Bureau for initial discussions which resulted in this manuscript. I would like to acknowledge Drs Garth Redfield and Todd Osborne for their review and critical comments on earlier versions of this manuscript and the anonymous peer reviewer(s) and editor(s) for their efforts and constructive review of this manuscript. Finally, I would to thank all of the current and past South Florida Water Management District and Everglades National Park staff involved in the collection and laboratory analysis of the data used in this manuscript. Without their dedication this work would not have been possible. Support to write this manuscript was provided by the State of Florida.

Funding

Support to write this manuscript was provided by the State of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Julian II.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julian, P. Assessment of Upper Taylor Slough water quality and implications for ecosystem management in Everglades National Park. Wetlands Ecol Manage 25, 191–209 (2017). https://doi.org/10.1007/s11273-016-9509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-016-9509-8

Keywords

Navigation