Skip to main content
Log in

Testing of Magnetic ZnO/MgFe2O4 Heterostructures for Photocatalytic Removal of Synthetic Dye Pollutants from Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Worldwide population growth and pollution have limited the availability of clean water. Therefore, it is imperative to develop rapid water purification techniques that can eliminate all primary water pollutants, such as organic compounds and synthetic dyes. Pollutant disposal using a photocatalytic technique is efficient and safe for the environment. In this context, the ZnO/MgFe2O4 heterostructure photocatalyst is produced via a sol–gel technique to degrade methylene blue (MB) as a benchmark dye. Synthesized samples are characterized by numerous analytical techniques, including X-ray diffraction analysis, scanning electron microscopy, scanning tunneling electron microscopy, vibrating sample magnetometer, Fourier transform infrared spectroscopy, I-V characteristics curves, and photoluminescence spectroscopy. Photocatalytic degradation efficiency is witnessed at 40.01%, 55.05%, and 71.02% for ZnO, MgFe2O4, and ZnO/MgFe2O4, respectively. Among all the samples, composite heterojunction demonstrates the highest photocatalytic degradation efficiency. The obtained results reveal that the presence of magnetic ferrite in heterojunction promotes the absorption of radiation, reduces electron–hole recombination, and improves charge transfer. High stability over multiple cycles and easy removal character are the added benefits of the tested heterojunction photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agami, W. R., Ashmawy, M. A., & Sattar, A. A. (2014). Structural, IR, and magnetic studies of annealed Li-ferrite nanoparticles. Journal of Materials Engineering and Performance, 23, 604–610.

    Article  CAS  Google Scholar 

  • Ahmad, M., Ahmed, E., Hong, Z. L., Jiao, X. L., Abbas, T., & Khalid, N. R. (2013). Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Applied Surface Science, 285, 702–712.

    Article  CAS  Google Scholar 

  • Ahmaruzzaman, M. (2021). Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Materials Research Bulletin, 140, 111262.

    Article  CAS  Google Scholar 

  • Ain, N.-U., Shaheen, W., Bashir, B., Abdelsalam, N. M., Warsi, M. F., Khan, M. A., et al. (2016). Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation. Ceramics International, 42, 12401–12408.

    Article  CAS  Google Scholar 

  • Ajeesha, T., Ashwini, A., George, M., Manikandan, A., Mary, J. A., Slimani, Y., et al. (2021). Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Physica B: Condensed Matter, 606, 412660.

    Article  CAS  Google Scholar 

  • Bahadoran, A., Masudy-Panah, S., De Lile, J. R., Li, J., Gu, J., Sadeghi, B., et al. (2021). Novel 0D/1D ZnBi2O4/ZnO S-scheme photocatalyst for hydrogen production and BPA removal. International Journal of Hydrogen Energy, 46, 24094–24106.

    Article  CAS  Google Scholar 

  • Batoo, K. M., Mir, F. A., Abd El-sadek, M. S., Shahabuddin, M., Ahmed, N. (2013). Extraordinary high dielectric constant, electrical and magnetic properties of ferrite nanoparticles at room temperature. Journal of Nanoparticle Research, 15:1–9.

  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603–643.

    Article  Google Scholar 

  • Debnath, S., & Das, R. (2021). Cobalt doping on nickel ferrite nanocrystals enhances the micro-structural and magnetic properties: Shows a correlation between them. Journal of Alloys and Compounds, 852, 156884.

    Article  CAS  Google Scholar 

  • Dojcinovic, M. P., Vasiljevic, Z. Z., Pavlovic, V. P., Barisic, D., Pajic, D., Tadic, N. B., et al. (2021). Mixed Mg–Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties. Journal of Alloys and Compounds, 855, 157429.

    Article  CAS  Google Scholar 

  • Dou, R., Cheng, H., Ma, J., & Komarneni, S. (2020). Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis. Materials Chemistry and Physics, 240, 122181.

    Article  CAS  Google Scholar 

  • Fatima, R., Warsi, M. F., Sarwar, M. I., Shakir, I., Agboola, P. O., Aboud, M. F. A., et al. (2021). Synthesis and characterization of hetero-metallic oxides-reduced graphene oxide nanocomposites for photocatalytic applications. Ceramics International, 47, 7642–7652.

    Article  CAS  Google Scholar 

  • Fauzi, A. A., Jalil, A. A., Hassan, N. S., Aziz, F. F. A., Azami, M. S., Hussain, I., et al. (2022). A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere, 286, 131651.

    Article  CAS  Google Scholar 

  • Goktas, S., & Goktas, A. (2021). A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds, 863, 158734.

    Article  CAS  Google Scholar 

  • Gore, S. K., Jadhav, S. S., Jadhav, V. V., Patange, S. M., Naushad, M., Mane, R. S., et al. (2017). The structural and magnetic properties of dual phase cobalt ferrite. Scientific Reports, 7, 1–9.

    Article  CAS  Google Scholar 

  • Goswami, M., Adhikary, N. C., & Bhattacharjee, S. (2018). Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. Optik, 158, 1006–1015.

    Article  CAS  Google Scholar 

  • Hamed, A. S., Ali, I. A., El Ghazaly, M., Al-Abyad, M., & Hassan, H. E. (2021). Nanocomposites of ZnO mixed with different Ni-ferrite contents: Structural and magnetic properties. Physica B: Condensed Matter, 607, 412861.

    Article  CAS  Google Scholar 

  • Hussein, S. I., Elkady, A. S., Rashad, M. M., Mostafa, A. G., & Megahid, R. M. (2015). Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction. Journal of Magnetism and Magnetic Materials, 379, 9–15.

    Article  CAS  Google Scholar 

  • Ichiyanagi, Y., Kubota, M., Moritake, S., Kanazawa, Y., Yamada, T., & Uehashi, T. (2007). Magnetic properties of Mg-ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 310, 2378–2380.

    Article  CAS  Google Scholar 

  • Indriyani, A., Yulizar, Y., Yunarti, R. T., Apriandanu, D. O. B., & Surya, R. M. (2021). One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation. Applied Surface Science, 563, 150113.

    Article  CAS  Google Scholar 

  • Israr, M., Iqbal, J., Arshad, A., Gómez-Romero, P., & Benages, R. (2020). Multifunctional MgFe2O4/GNPs nanocomposite: graphene-promoted visible light driven photocatalytic activity and electrochemical performance of MgFe2O4 nanoparticles. Solid State Sciences, 110, 106363.

  • Jelokhani, F., Sheibani, S., & Ataie, A. (2020). Adsorption and photocatalytic characteristics of cobalt ferrite-reduced graphene oxide and cobalt ferrite-carbon nanotube nanocomposites. Journal of Photochemistry and Photobiology a: Chemistry, 403, 112867.

    Article  CAS  Google Scholar 

  • Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6, 4676–4697.

    Article  CAS  Google Scholar 

  • Khan, A., Begum, S., Ali, N., Khan, S., Hussain, S., & Sotomayor, M. D. P. T. (2017). Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution. Water Science and Technology, 75, 2034–2046.

    Article  CAS  Google Scholar 

  • Kim, H. G., Borse, P. H., Jang, J. S., Jeong, E. D., Jung, O. S., Suh, Y. J., & Lee, J. S. (2009). Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chemical Communications, 2009, 5889–5891.

  • Kim, S., Nam, S.-N., Jang, A., Jang, M., Park, C. M., Son, A., et al. (2022). Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere, 286, 131916.

    Article  CAS  Google Scholar 

  • Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C. (2020). An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27, 2522–2565.

    Article  CAS  Google Scholar 

  • Kurian, J., & Mathew, M. J. (2018). Structural, magnetic and mossbauer studies of magnesium ferrite nanoparticles prepared by hydrothermal method. International Journal of Nanoscience, 17, 1760001.

    Article  CAS  Google Scholar 

  • Lee, S. S., Bai, H., Liu, Z., & Sun, D. D. (2013). Optimization and an insightful properties—activity study of electrospun TiO2/CuO composite nanofibers for efficient photocatalytic H2 generation. Applied Catalysis B: Environmental, 140, 68–81.

  • Liu, C.-H., Wu, J.-S., Chiu, H.-C., Suen, S.-Y., & Chu, K. H. (2007). Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Research, 41, 1491–1500.

    Article  CAS  Google Scholar 

  • Lopez, R., Villa-Sánchez, G., de la Cruz, I. V., Encarnacion-Gomez, C., Castrejón-Sánchez, V. H., Coyopol, A., et al. (2021). Cupric oxide (CuO)/zinc oxide (ZnO) heterojunction diode with low turn-on voltage. Results in Physics, 22, 103891.

    Article  Google Scholar 

  • Masunga, N., Mmelesi, O. K., Kefeni, K. K., & Mamba, B. B. (2019). Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment. Journal of Environmental Chemical Engineering, 7, 103179.

    Article  CAS  Google Scholar 

  • Munir, S., Warsi, M. F., Zulfiqar, S., Ayman, I., Haider, S., Alsafari, I. A., et al. (2021). Nickel ferrite/zinc oxide nanocomposite: Investigating the photocatalytic and antibacterial properties. Journal of Saudi Chemical Society, 25, 101388.

    Article  CAS  Google Scholar 

  • Poonguzhali, R. V., Kumar, E. R., Sumithra, M. G., Arunadevi, N., Rahale, C. S., Munshi, A. M., et al. (2021). Natural citric acid (lemon juice) assisted synthesis of ZnO nanostructures: Evaluation of phase composition, morphology, optical and thermal properties. Ceramics International, 47, 23110–23115.

    Article  Google Scholar 

  • Rameshbabu, R., Kumar, N., Karthigeyan, A., & Neppolian, B. (2016). Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants. Materials Chemistry and Physics, 181, 106–115.

    Article  CAS  Google Scholar 

  • Rezaei, M., & Habibi-Yangjeh, A. (2013). Microwave-assisted preparation of Ce-doped ZnO nanostructures as an efficient photocatalyst. Materials Letters, 110, 53–56.

    Article  CAS  Google Scholar 

  • Saleem, S., Irfan, M., Naz, M. Y., Shukrullah, S., Munir, M. A., Ayyaz, M., et al. (2022). Investigating the impact of Cu2+ doping on the morphological, structural, optical, and electrical properties of CoFe2O4 nanoparticles for use in electrical devices. Materials, 15, 3502.

    Article  CAS  Google Scholar 

  • Shuai, C., Yuan, X., Shuai, Y., Qian, G., Yao, J., Xu, W., et al. (2022). Nitrogen-doped carbon-ZnO heterojunction derived from ZIF-8: A photocatalytic antibacterial strategy for scaffold. Materials Today Nano, 18, 100210.

    Article  CAS  Google Scholar 

  • Srinivasan, S. S., Wade, J., & Stefanakos, E. K. (2006). Synthesis and characterization of photocatalytic TiO2-ZnFe2O4 nanoparticles. Journal of Nanomaterials, 2006, 1–4.

  • Vaish, G., Kripal, R., & Kumar, L. (2021). Comprehensive study of magnetic and optoelectronic properties of MgFe2O4–TiO2 nanocomposites. Materials Chemistry and Physics, 271, 124911.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, H. (2020). Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Science of the Total Environment, 704, 135249.

    Article  CAS  Google Scholar 

  • Wang, H., Wu, Y., Feng, M., Tu, W., Xiao, T., Xiong, T., et al. (2018). Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Research, 144, 215–225.

    Article  CAS  Google Scholar 

  • Xu, J., Li, M., Yang, L., Qiu, J., Chen, Q., Zhang, X., et al. (2020). Synergy of Ni dopant and oxygen vacancies in ZnO for efficient photocatalytic depolymerization of sodium lignosulfonate. Chemical Engineering Journal, 394, 125050.

    Article  CAS  Google Scholar 

  • Yulizar, Y., Eprasatya, A., Apriandanu, D. O. B., & Yunarti, R. T. (2021). Facile synthesis of ZnO/GdCoO3 nanocomposites, characterization and their photocatalytic activity under visible light illumination. Vacuum, 183, 109821.

    Article  CAS  Google Scholar 

  • Zhao, Q., Zhang, H., Li, J., Xu, F., Liao, Y., Liu, C., et al. (2019). Low-temperature sintering synthesis and electromagnetic properties of NiCuZn/BaTiO3 composite materials. Journal of Alloys and Compounds, 788, 44–49.

    Article  CAS  Google Scholar 

  • Zhou, Y., Fang, S., Zhou, M., Wang, G., Xue, S., Li, Z., et al. (2017). Fabrication of novel ZnFe2O4/BiOI nanocomposites and its efficient photocatalytic activity under visible-light irradiation. Journal of Alloys and Compounds, 696, 353–361.

    Article  CAS  Google Scholar 

  • Zhu, W., Liu, J., Yu, S., Zhou, Y., & Yan, X. (2016). Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Journal of Hazardous Materials, 318, 407–416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Deanship of Scientific Research, Najran University, Kingdom of Saudi Arabia, for funding this work under the Research Groups funding program grant code number (NU/RG/SERC/12/9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yasin Naz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, M., Munir, M.A., Naz, M.Y. et al. Testing of Magnetic ZnO/MgFe2O4 Heterostructures for Photocatalytic Removal of Synthetic Dye Pollutants from Wastewater. Water Air Soil Pollut 234, 422 (2023). https://doi.org/10.1007/s11270-023-06467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06467-6

Keywords

Navigation