Skip to main content
Log in

Synthesis and Characterizations of Graphene/Copper Ferrite for Efficient Arsenic Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

CuFe2O4 nanoparticles were synthesized via the sol–gel auto combustion method—their hybrid nanocomposite with layer-structured graphene. X-ray diffraction results confirmed the crystallite size of CuFe2O4 nanoparticles up to 53 nm. The standard deviation in crystallite size ranges from 34.57 nm of 20% copper ferrite to 53 nm of pure copper ferrite. Fourier transform infrared spectroscopy results confirm three distinct peaks at 1649 cm−1, 1579 cm−1, and 589 cm−1 corresponding to C = O related to carboxyl stretching, C = C related to aromatic stretching, and Fe–O, respectively. Scanning electron microscopy images demonstrate the surface morphology of CuFe2O4 nanoparticles and their nanocomposite. Vibrating sample magnetometer results illustrate that the pure crystal structure of magnetic CuFe2O4 nanoparticles has magnetic saturation (Ms) of ~ 16.69 emu/g with a considerable remanence of around 29.22 emu/g. Energy dispersive X-ray spectroscopy confirms the qualitative and quantitative contents of ferrites and graphene in nanoparticles and nanocomposites. Brunauer–Emmett–Teller surface area analysis results show that the specific surface area increases from 10.88 to 288.5 m2/g by increasing the polymer concentration. Pore size has been calculated between 2.6 and 3.1 nm which shows that the synthesized nanoparticles are in the mesoporous range. The prepared composite was explored for adsorption of As(III) and As(V) from aqueous media for practical applications. The results demonstrate excellent adsorption capacities attributed to the synergistic role of CuFe2O4 and graphene sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, M. J. K., & Ahmaruzzaman, M. (2016). A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering, 10, 39–47.

    Article  Google Scholar 

  • Ali, W., Mao, K., Zhang, H., Junaid, M., Xu, N., Rasool, A., ... & Yang, Z. (2020). Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries.Journal of Hazardous Materials 397, 122720

  • Bashir, B., Shaheen, W., Asghar, M., Warsi, M. F., Khan, M. A., Haider, S., ... & Shahid, M. (2017). Copper doped manganese ferrites nanoparticles anchored on graphene nanosheets for high performance energy storage applications. Journal of Alloys and Compounds, 695, 881–887

  • Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., ... & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production 296, 126589

  • Chandel, M., Moitra, D., Makkar, P., Sinha, H., Hora, H. S., & Ghosh, N. N. (2018). Synthesis of multifunctional CuFe 2 O 4–reduced graphene oxide nanocomposite: An efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures. RSC Advances, 8(49), 27725–27739.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41.

    Article  Google Scholar 

  • Chen, B., Zhu, Z., Ma, J., Qiu, Y., & Chen, J. (2015). Iron oxide supported sulfhydryl-functionalized multiwalled carbon nanotubes for removal of arsenite from aqueous solution. ChemPlusChem, 80(4), 740.

    Article  CAS  Google Scholar 

  • Cooney, D. O. (1998). Adsorption design for wastewater treatment. CRC Press.

    Google Scholar 

  • Cseri, L., Topuz, F., Abdulhamid, M. A., Alammar, A., Budd, P. M., & Szekely, G. (2021). Electrospun adsorptive nanofibrous membranes from ion exchange polymers to snare textile dyes from wastewater. Advanced Materials Technologies, 6, 2000955.

    Article  CAS  Google Scholar 

  • Cychosz, K. A., & Thommes, M. (2018). Progress in the physisorption characterization of nano-porous gas storage materials. Engineering, 4(4), 559–566.

    Article  CAS  Google Scholar 

  • Dhanda, R., & Kidwai, M. (2016). Magnetically separable CuFe 2 O 4/reduced graphene oxide nanocomposites: As a highly active catalyst for solvent free oxidative coupling of amines to imines. RSC Advances, 6(58), 53430–53437.

    Article  CAS  Google Scholar 

  • Feng, L., Cao, M., Ma, X., Zhu, Y., & Hu, C. (2012). Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. Journal of Hazardous Materials, 217, 439–446.

    Article  Google Scholar 

  • Fu, Y., Chen, Q., He, M., Wan, Y., Sun, X., Xia, H., & Wang, X. (2012). Copper ferrite-graphene hybrid: A multifunctional heteroarchitecture for photocatalysis and energy storage. Industrial & Engineering Chemistry Research, 51(36), 11700–11709.

    Article  CAS  Google Scholar 

  • Hassanzadeh-Afruzi, F., Heidari, G., & Maleki, A. (2022). Magnetic nanocomposite hydrogel based on Arabic gum for remediation of lead (II) from contaminated water. Materials Chemistry Horizons, 1.2, 107–122.

    Google Scholar 

  • Idumah, C. I., & Hassan, A. (2016). Emerging trends in graphene carbon based polymer nanocomposites and applications. Reviews in Chemical Engineering, 32(2), 223–264.

    Article  CAS  Google Scholar 

  • Iftekhar, S., Heidari, G., Amanat, N., Zare, E. N., Asif, M. B., Hassanpour, M., Lehto, V. P., & Sillanpaa, M. (2022). Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: A review. Environmental Chemistry Letter. https://doi.org/10.1007/s10311-022-01486-x

    Article  Google Scholar 

  • Israr, M., Iqbal, J., Arshad, A., Sadaf, A., Rani, M., Rani, M., & Jabeen, S. (2021). CuFe2O4/GNPs nanocomposites for symmetric supercapacitors and photocatalytic applications. Journal of Physics D: Applied Physics, 54, 395501.

    Article  CAS  Google Scholar 

  • Joshi, S., Sharma, M., Kumari, A., Shrestha, S., & Shrestha, B. (2019). Arsenic removal from water by adsorption onto iron oxide/nano-porous carbon magnetic composite. Applied Sciences, 9(18), 3732.

    Article  CAS  Google Scholar 

  • Kalaruban, M., Loganathan, P., Nguyen, T. V., Nur, T., Johir, M. A. H., Nguyen, T. H., ... & Vigneswaran, S. (2019). Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. Journal of Environmental Management, 239, 235–243

  • Kheyrabadi, F. B., & Zare, E. N. (2022). Antimicrobial nanocomposite adsorbent based on poly (meta-phenylenediamine) for remediation of lead (II) from water medium. Science Reports, 12(1), 1–14.

    Google Scholar 

  • Kumar, A., Rout, L., Achary, L. S. K., Dhaka, R. S., & Dash, P. (2017). Greener route for synthesis of aryl and alkyl-14H-dibenzo [aj] xanthenes using graphene oxide-copper ferrite nanocomposite as a recyclable heterogeneous catalyst. Scientific Reports, 7(1), 1–18.

    Google Scholar 

  • Kyzas, G. Z., Deliyanni, E. A., & Matis, K. A. (2014). Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology & Biotechnology, 89(2), 196–205.

    Article  CAS  Google Scholar 

  • La, D. D., Nguyen, T. A., Jones, L. A., & Bhosale, S. V. (2017). Graphene-supported spinel CuFe2O4 composites: Novel adsorbents for arsenic removal in aqueous media. Sensors, 17(6), 1292.

    Article  Google Scholar 

  • Le, G. H., et al. (2017). Highly photocatalytic activity of novel CuFe2O4/GO nano composite in the degradation of phenol from aqueous solution. Physical Chemistry, 7(1), 8–16.

    CAS  Google Scholar 

  • Li, Q., Li, S., Liu, Q., Liu, X., Shui, J., & Kong, X. (2021). Iodine cation bridged graphene sheets with strengthened interface combination for electromagnetic wave absorption. Carbon, 183, 100–107.

    Article  CAS  Google Scholar 

  • Lingamdinne, L. P., et al. (2016). Adsorption removal of Co (II) from waste-water using graphene oxide. Hydrometallurgy, 165, 90–96.

    Article  CAS  Google Scholar 

  • Liu, B., et al. (2019). Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for rdx thermal decomposition. Journal of Nanoparticle Research, 21, 1–9.

    Article  Google Scholar 

  • Liu, F., et al. (2019). Application of magnetic ferrite nanoparticles for removal of Cu (II) from copper-ammonia wastewater. Journal of Alloys and Compounds, 773, 140–149.

    Article  CAS  Google Scholar 

  • Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2012). Characterization of porous solids and powders: Surface area, pore size and density (Vol. 16). Springer Science & Business Media.

  • Luo, H., Zeng, Y., He, D., & Pan, X. (2021). Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal, 407, 127191.

    Article  CAS  Google Scholar 

  • Martinson, C. A., & Reddy, K. J. (2009). Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336(2), 406–411.

    Article  CAS  Google Scholar 

  • Mehdizadeh, A., NajafiMoghadam, P., Ehsanimehr, S., & Fareghi, A. R. (2022). Preparation of a new magnetic nanocomposite for the removal of dye pollutions from aqueous solutions: Synthesis and characterization. Materials Chemistry Horizons, 1(1), 23–34.

    Google Scholar 

  • Mochizuki, H. (2019). Arsenic neurotoxicity in humans. International Journal of Molecular Sciences, 20(14), 3418.

    Article  CAS  Google Scholar 

  • Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226–254.

    Article  CAS  Google Scholar 

  • Naresh, U., Kumar, N. S., Basha, D. B., Benerjee, P., Naidu, K. C. B., Kumar, R. J., ... & Boddula, R. (2020). Synthesis and properties of graphene‐based materials. In Monoelements: Properties and applications (pp. 57–72). John Wiley & Sons.

  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295–302.

    Article  Google Scholar 

  • Nazir, G., Rehman, A., Hussain, S., Afzal, A. M., Dastgeer, G., Rehman, M. A., ... & AlObaid, A. A. (2021a). Heteroatoms-doped hierarchical porous carbons: Multifunctional materials for effective methylene blue removal and cryogenic hydrogen storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630 127554

  • Nazir, G., Rehman, A., & Park, S. J. (2021b). Valorization of shrimp shell biowaste for environmental remediation: Efficient contender for CO2 adsorption and separation. Journal of Environmental Management, 299, 113661.

    Article  CAS  Google Scholar 

  • Nirumand, L., Farhadi, S., & Zabardasti, A. (2018). Magnetically separable Ag/CuFe2O4/reduced graphene oxide ternary nanocomposite with high performance for the removal of nitrophenols and dye pollutants from aqueous media. Acta Chimica Slovenica, 65(4), 919–931.

    Article  CAS  Google Scholar 

  • Olguín, E. J., & Sánchez-Galván, G. (2012). Heavy metal removal in phytofiltration and phycoremediation the need to differentiate between bioadsorption and bioaccumulation. New Biotechnology, 30, 3–8.

    Article  Google Scholar 

  • Oyewo, O. A., Elemike, E. E., Onwudiwe, D. C., & Onyango, M. S. (2020). Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal of Biological Macromolecules, 164, 2477.

    Article  CAS  Google Scholar 

  • Peng, Y., Azeem, M., Li, R., Xing, L., Li, Y., Zhang, Y., ... & Zhang, Z. (2022). Zirconium hydroxide nanoparticle encapsulated magnetic biochar composite derived from rice residue: Application for As (III) and As (V) polluted water purification. Journal of Hazardous Materials, 423, 127081

  • Peymanfar, R., Azadi, F., & Yassi, Y. (2018). Preparation and characterization of CuFe2O4 nanoparticles by the sol-gel method and investigation of its microwave absorption properties at Ku-band frequency using silicone rubber. In Multidisciplinary Digital Publishing Institute Proceedings, 2(17), 1155.

    Google Scholar 

  • Polak-Juszczak, L., & Richert, J. S. (2021). Arsenic speciation in fish from Baltic Sea close to chemical munitions dumpsites. Chemosphere, 284, 131326.

    Article  CAS  Google Scholar 

  • Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 1–15.

    Google Scholar 

  • Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environmental Science and Pollution Research, 28, 1–17.

    Article  Google Scholar 

  • Reddy, D. H. K., & Lee, S. M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science, 201, 68–93.

    Article  Google Scholar 

  • Reddy, M. V., Cherian, C. T., Ramanathan, K., Jie, K. C. W., Daryl, T. Y. W., Hao, T. Y., ... & Chowdari, B. V. R. (2014). Molten synthesis of ZnO.Fe3O4 and Fe2O3 and its electrochemical performance. Electrochimica Acta, 118, 75–80

  • Rehman, A., & Park, S. J. (2019). Environmental remediation by microporous carbon: An efficient contender for CO2 and methylene blue adsorption. Journal of CO2 Utilization, 34, 656–667.

    Article  CAS  Google Scholar 

  • Ren, Z., Zhang, G., & Chen, J. P. (2011). Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. Journal of Colloid and Interface Science, 358(1), 230–237.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Yeon, K. H., & Moon, S. H. (2001). Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 87(1–3), 273–287.

    Article  CAS  Google Scholar 

  • Rezlescu, N., et al. (2012). Semiconducting spinel ferrite powders prepared by self-combustion method for catalyst applications: CAS 2012 (International Semiconductor Conference) (Vol. 2, pp. 287–290). IEEE.

  • Rivera-Hernández, J. R., Green-Ruiz, C. R., Pelling-Salazar, L. E., & Flegal, A. R. (2021). Monitoring of As, Cd, Cr, and Pb in groundwater of Mexico’s Agriculture Mocorito River Aquifer: Implications for risks to human health. Water, Air, & Soil Pollution, 232(7), 1–20.

    Article  Google Scholar 

  • Sabari Girisun, T. C., Saravanan, M., & Venugopal Rao, S. (2019). Femtosecond nonlinear absorption and optical limiting action in nanoplatelet CuFe2O4-decorated rGO nanocomposites. SN Applied Sciences, 1(5), 1–14.

    Article  CAS  Google Scholar 

  • Santoro, S., Timpano, P., Avci, A. H., Argurio, P., Chidichimo, F., De Biase, M., ... & Curcio, E. (2021). An integrated membrane distillation, photocatalysis and polyelectrolyte-enhanced ultrafiltration process for arsenic remediation at point-of-use. Desalination 520, 115378

  • Shen, J., Zhu, Y., Jiang, H., & Li, C. (2016). 2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, 11(4), 483–520.

    Article  CAS  Google Scholar 

  • Singh, R., Ladol, J., Khajuria, H., & Sheikh, H. N. (2017). Nitrogen doped graphene nickel ferrite magnetic photocatalyst for the visible light degradation of methylene blue. Acta Chimica Slovenica, 64(1), 170–178.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • Sridhar, R., Dachepalli, R., & Vijaya, K. K. (2012). Synthesis and characterization of copper substituted nickel nano-ferrites by citrate-gel technique. Advances in Materials Physics and Chemistry, 2, 192.

    Article  Google Scholar 

  • Srivastava, V., Zare, E. N., Makvandi, P., Zheng, X.-Q., Iftekhar, S., Wu, A., Padil, V. V., Mokhtari, B., Varma, R. S., & Tay, F. R. (2020). Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere, 258, 127324.

    Article  CAS  Google Scholar 

  • Su, H., Ye, Z., & Hmidi, N. (2017). High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 522, 161–172.

    Article  CAS  Google Scholar 

  • Tabish, T. A., Memon, F. A., Gomez, D. E., Horsell, D. W., & Zhang, S. (2018). A facile synthesis of porous graphene for efficient water and wastewater treatment. Scientific Reports, 8(1), 1–14.

    Article  CAS  Google Scholar 

  • Taheri, M., Gharaie, M. H. M., Mehrzad, J., Afshari, R., & Datta, S. (2017). Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone. Journal of Geochemical Exploration, 175, 1–10.

    Article  CAS  Google Scholar 

  • Tang, W. W., Zeng, G. M., Gong, J. L., Liang, J., Xu, P., Zhang, C., & Huang, B. B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468, 1014–1027.

    Article  Google Scholar 

  • Tang, M., Li, X., Gao, C., Li, X., & Qiu, H. (2017). Adsorption performance of CuFe2O4/rGO nanocomposites towards organic dye. Materials Chemistry and Physics, 185, 114–121.

    Article  CAS  Google Scholar 

  • Ullah, R., Deb, B. K., & Mollah, M. Y. A. (2014). Synthesis and characterization of silica coated iron-oxide composites of different ratios. International Journal of Composite Materials, 4(2), 135–145.

    CAS  Google Scholar 

  • Upadhyay, R. K., Soin, N., & Roy, S. S. (2014). Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Advances, 4(8), 3823–3851.

    Article  CAS  Google Scholar 

  • Visvanathan, C., Aim, R. B., & Parameshwaran, K. (2000). Membrane separation bioreactors for wastewater treatment. Critical Reviews in Environmental Science and Technology, 30(1), 1–48.

    Article  CAS  Google Scholar 

  • Vourch, M., Balannec, B., Chaufer, B., & Dorange, G. (2008). Treatment of dairy industry waste water by reverse osmosis for water reuse. Desalination, 219(1–3), 190–202.

    Article  CAS  Google Scholar 

  • Weerasundara, L., Ok, Y. S., & Bundschuh, J. (2021). Selective removal of arsenic in water: A critical review. Environmental Pollution, 268, 115668.

    Article  CAS  Google Scholar 

  • World Health Organization. (2009). Bromide in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality (No. WHO/HSE/WSH/09.01/6). World Health Organization.

    Google Scholar 

  • Wu, L. K., Wu, H., Liu, Z. Z., Cao, H. Z., Hou, G. Y., Tang, Y. P., & Zheng, G. Q. (2018). Highly porous copper ferrite foam: A promising adsorbent for efficient removal of As (III) and As (V) from water. Journal of Hazardous Materials, 347, 15–24.

    Article  CAS  Google Scholar 

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., ... & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1–10

  • Yang, Y., Zhang, C., & Hu, Z. (2013). Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environmental Science: Processes & Impacts, 15(1), 39–48.

    CAS  Google Scholar 

  • Zhang, Y. U., Yang, M. I. N., Dou, X. M., He, H., & Wang, D. S. (2005). Arsenate adsorption on an Fe− Ce bimetal oxide adsorbent: Role of surface properties. Environmental Science & Technology, 39(18), 7246–7253.

    Article  CAS  Google Scholar 

  • Zhang, G., Ren, Z., Zhang, X., & Chen, J. (2013). Nanostructured iron (III)-copper (II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Research, 47(12), 4022–4031.

    Article  CAS  Google Scholar 

  • Zhang, H., Gao, S., Shang, N., Wang, C., & Wang, Z. (2014). Copper ferrite–graphene hybrid: A highly efficient magnetic catalyst for chemoselective reduction of nitroarenes. RSC Advances, 4(59), 31328–31332.

    Article  CAS  Google Scholar 

  • Zhang, L., Zeng, Y., & Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175–191.

    Article  CAS  Google Scholar 

  • Zhang, L. C., Jia, Z., Lyu, F., Liang, S. X., & Lu, J. (2019). A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science, 105, 100576.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Azhar Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M., Murtaza, G. & Khan, M.A. Synthesis and Characterizations of Graphene/Copper Ferrite for Efficient Arsenic Removal. Water Air Soil Pollut 234, 276 (2023). https://doi.org/10.1007/s11270-023-06276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06276-x

Keywords

Navigation