Skip to main content
Log in

OMICS Approaches in Mitigating Metal Toxicity in Comparison to Conventional Techniques Used in Cadmium Bioremediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The modern world is prevailing into vulnerability to pollution. Heavy metals form a major part of global tainting. The increase in anthropogenic sources of contaminants is increasing intensely, particularly in the case of cadmium. A plethora of chemical and physical remediation methods are deployed for decontamination but are less effective as well as economical. Their imperfection is also in terms of being less environmentally friendly. Thus, biological approaches capture everyone’s attraction because of their biggest strength which is less use of chemicals, consequently making it an eco-friendly technique to be preferred over others. Many microbes specifically bacteria follow different mechanisms such as effluxing cadmium out of cells, detoxifying cadmium ions, and using enzymes to make cell membranes impermeable to cadmium. This paper aimed at revealing the different mechanisms of microbes explicitly to detoxify, absorb, adsorb, and accumulate cadmium. Biological approaches prove to be a promising tool to detoxify heavy metals; however, obstacles like less availability and slow growth, as well as specific growth requirements, attribute to their low feasibility in the process. To overcome such problems, OMICS approaches play a substantial role in understanding biological systems through comprehensive analysis. These approaches provide next-level studies of bioremediation through genomics, metagenomics, and different metabolomics. These technologies predominantly focus on extensive information from databases to predict or draw out productive conclusions, thus providing critical as well as advanced insights into understanding the flaws in the process. Hence, the present review incorporates the study of biological systems and their enhancement through Omics approaches to fulfill the aim of removing heavy metals from the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data used to support the findings of the above study are included in the article.

References

  • Abbas, S. Z., Riaz, M., Ramzan, N., Zahid, M. T., Shakoori, F. R., & Rafatullah, M. (2014). Isolation and characterization of arsenic-resistant bacteria from wastewater. Brazilian Journal of Microbiology, 45(4), 1309–1315. https://doi.org/10.1590/S1517-83822014000400022

    Article  CAS  Google Scholar 

  • Afraz, V., Younesi, H., Bolandi, M., & Hadiani, M. R. (2020). Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. Biocatalysis and Agricultural Biotechnology, 29, 101828. https://doi.org/10.1016/j.bcab.2020.101828

    Article  Google Scholar 

  • Ahmed, A. S. S., Sultana, S., Habib, A., Ullah, H., Musa, N., Hossain, M. B., Rahman, Md. M., & Sarker, Md. S. I. (2019). Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLOS ONE, 14(10), e0219336. https://doi.org/10.1371/journal.pone.0219336

    Article  CAS  Google Scholar 

  • Alawaleed, E. A., AbdeL Latef, A. A., & EL-Sheekh, M. (2021). Biosorption efficacy of living and non-living algal cells of Microcystis aeruginosa to toxic metals. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12149. https://doi.org/10.15835/nbha49112149

    Article  CAS  Google Scholar 

  • Aldridge, B. B., & Rhee, K. Y. (2014). Microbial metabolomics: Innovation, application, insight. Current Opinion in Microbiology, 19, 90–96. https://doi.org/10.1016/j.mib.2014.06.009

    Article  CAS  Google Scholar 

  • Alloway, B. J. (Ed.). (1995). Heavy metals in soils. Springer Netherlands. https://doi.org/10.1007/978-94-011-1344-1

  • Bastida, F., Nicolás, C., Moreno, J. L., Hernández, T., & García, C. (2010). Tracing changes in the microbial community of a hydrocarbon-polluted soil by culture-dependent proteomics. Pedosphere, 20(4), 479–485. https://doi.org/10.1016/s1002-0160(10)60037-9

    Article  CAS  Google Scholar 

  • Bastida, F., Hernández, T., & García, C. (2014). Metaproteomics of soils from semiarid environment: Functional and phylogenetic information obtained with different protein extraction methods. Journal of Proteomics, 101, 31–42. https://doi.org/10.1016/j.jprot.2014.02.006

    Article  CAS  Google Scholar 

  • Bastida, F., Jehmlich, N., Lima, K., Morris, B. E. L., Richnow, H. H., Hernández, T., von Bergen, M., & García, C. (2016). The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Journal of Proteomics, 135, 162–169. https://doi.org/10.1016/j.jprot.2015.07.023

    Article  CAS  Google Scholar 

  • Bawuro, A. A., Voegborlo, R. B., & Adimado, A. A. (2018). Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health, 2018, 1–7. https://doi.org/10.1155/2018/1854892

    Article  CAS  Google Scholar 

  • Bilal, T., Malik, B., & Hakeem, K. R. (2018). Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. Journal of Microbiological Methods, 155, 65–69. https://doi.org/10.1016/j.mimet.2018.11.014\

    Article  CAS  Google Scholar 

  • Brady, D., Stoll, A. D., Starke, L., & Duncan, J. R. (1994). Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41, 149–154.

    Article  CAS  Google Scholar 

  • Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2012). The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three Brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma, 170, 322–330.

    Article  CAS  Google Scholar 

  • Camacho-Chab, J., Castañeda-Chávez, M., Chan-Bacab, M., Aguila-Ramírez, R., Galaviz-Villa, I., Bartolo-Pérez, P., Lango-Reynoso, F., Tabasco-Novelo, C., Gaylarde, C., & Ortega-Morales, B. (2018). Biosorption of cadmium by non-toxic extracellular polymeric substances (EPS) synthesized by bacteria from marine intertidal biofilms. International Journal of Environmental Research and Public Health, 15(2), 314. https://doi.org/10.3390/ijerph15020314

    Article  CAS  Google Scholar 

  • Chanmugathas, P., & Bollag, J.-M. (1988). A column study of the biological mobilization and speciation of cadmium in soil. Archives of Environmental Contamination and Toxicology, 17(2), 229–237. https://doi.org/10.1007/bf01056029

    Article  CAS  Google Scholar 

  • Chellaiah, E. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8, 154. https://doi.org/10.1007/s13201-018-0796-5

    Article  CAS  Google Scholar 

  • Chen, M., Li, Y., Zhang, L., Wang, J., Zheng, C., & Zhang, X. (2014). Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans. Current Microbiology, 70(2), 290–297. https://doi.org/10.1007/s00284-014-0710-9

    Article  CAS  Google Scholar 

  • Chen, Y., Zhi, J., Zhang, H., Li, J., & Zhao, Q. (2018). Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PLoS One, 13(6), e0199721.

    Article  Google Scholar 

  • Chojnacka, K. (2010). Biosorption and bioaccumulation – the prospects for practical applications. Environment International, 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001

    Article  CAS  Google Scholar 

  • Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P., Melo, D. F., & Coelho, N. M. (2015). Bioremediation of polluted waters using microorganisms. In (Ed.), Advances in bioremediation of wastewater and polluted soil. IntechOpen. https://doi.org/10.5772/60770

  • Dangi, A. K., Sharma, B., Hill, R. T., & Shukla, P. (2019). Bioremediation through microbes: Systems biology and metabolic engineering approach. Critical Reviews in Biotechnology, 39(1), 79–98. https://doi.org/10.1080/07388551.2018.1500997

    Article  CAS  Google Scholar 

  • Delahaut, V., Rašković, B., Salvado, M. S., Bervoets, L., Blust, R., & De Boeck, G. (2020). Toxicity and bioaccumulation of cadmium, copper and zinc in a direct comparison at equitoxic concentrations in common carp (Cyprinus carpio) juveniles. PLOS One, 15(4), e0220485. https://doi.org/10.1371/journal.pone.0220485

    Article  CAS  Google Scholar 

  • Denef, V. J., VerBerkmoes, N. C., Shah, M. B., Abraham, P., Lefsrud, M., Hettich, R. L., & Banfield, J. F. (2009). Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environmental Microbiology, 11(2), 313–325. https://doi.org/10.1111/j.1462-2920.2008.01769.x

    Article  CAS  Google Scholar 

  • Denef, V. J., Kalnejais, L. H., Mueller, R. S., Wilmes, P., Baker, B. J., Thomas, B. C., VerBerkmoes, N. C., Hettich, R. L., & Banfield, J. F. (2010). Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proceedings of the National Academy of Sciences, 107(6), 2383–2390. https://doi.org/10.1073/pnas.0907041107

    Article  CAS  Google Scholar 

  • Deng, Y., Liu, X., Liu, H., Jiang, H., Xu, L., Xiao, Y., Hao, X., Yin, H., & Liang, Y. (2017). Bioleaching of cadmium from contaminated paddy fields by consortium of autotrophic and indigenous cadmium-tolerant bacteria. Solid State Phenomena, 262, 617–621.

    Article  Google Scholar 

  • Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., Singh, B., Rai, J., Sharma, P., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  • Dong, X., Greening, C., Rattray, J. E., Chakraborty, A., Chuvochina, M., Mayumi, D., Dolfing, J., Li, C., Brooks, J. M., Bernard, B. B., Groves, R. A., Lewis, I. A., & Hubert, C. R. J. (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09747-0

  • Du, H., Chen, W., Cai, P., Rong, X., Dai, K., Peacock, C. L., & Huang, Q. (2016). Cd(II) sorption on montmorillonite-humic acid-bacteria composites. Scientific Reports, 6(1). https://doi.org/10.1038/srep19499

  • El-Sheekh, M., El Sabagh, S., Abou El-Souod, G., & Elbeltagy, A. (2019). Biosorption of cadmium from aqueous solution by free and immobilized dry biomass of Chlorella vulgaris. International Journal of Environmental Research, 13(3), 511–521. https://doi.org/10.1007/s41742-019-00190-z

    Article  CAS  Google Scholar 

  • El-Sheekh, M., El-Sabagh, S., Abou Elsoud, G., & Elbeltagy, A. (2020). Efficacy of immobilized biomass of the seaweeds Ulva lactuca and Ulva fasciata for cadmium biosorption. Iranian Journal of Science and Technology, Transactions a: Science, 44(1), 37–49. https://doi.org/10.1007/s40995-020-00828-0

    Article  Google Scholar 

  • Feng, Z., Ji, S., Ping, J., & Cui, D. (2021). Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends in Analytical Chemistry, 143, 116402. https://doi.org/10.1016/j.trac.2021.116402

    Article  CAS  Google Scholar 

  • Filice, F. P., Li, M. S. M., Henderson, J. D., & Ding, Z. (2016). Mapping Cd2+-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy. Analytica Chimica Acta, 908, 85–94. https://doi.org/10.1016/j.aca.2015.12.027

    Article  CAS  Google Scholar 

  • Gan, W. J., Yue, H. E., Zhang, X. F., Shan, Y. H., Zheng, L. P., & Lin, Y. S. (2012). Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants. Journal of Ecology and Rural Environment, 28, 82–87.

    CAS  Google Scholar 

  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.

    Article  CAS  Google Scholar 

  • Ghavidel, A., Naji Rad, S., Alikhani, H. A., Sharari, M., & Ghanbari, A. (2017). Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH? Journal of Material Cycles and Waste Management, 20(2), 1179–1187. https://doi.org/10.1007/s10163-017-0680-7

    Article  CAS  Google Scholar 

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7(2), 311–319. https://doi.org/10.1016/s1093-0191(02)00004-7

    Article  CAS  Google Scholar 

  • Gregson, B. H., Metodieva, G., Metodiev, M. V., Golyshin, P. N., & McKew, B. A. (2020). Protein expression in the obligate hydrocarbon-degrading psychrophile Oleispira antarctica RB-8 during alkane degradation and cold tolerance. Environmental Microbiology, 22(5), 1870–1883. https://doi.org/10.1111/1462-2920.14956

    Article  CAS  Google Scholar 

  • Grostern, A., Sales, C. M., Zhuang, W.-Q., Erbilgin, O., & AlvarezCohen, L. (2012). Glyoxylate metabolism is a key feature of the metabolic degradation of 1, 4-dioxane by Pseudonocardia dioxanivorans strain CB1190. Applied Environmental Microbiology., 78(9), 3298–3308. https://doi.org/10.1128/AEM.00067-12

    Article  CAS  Google Scholar 

  • Guo, S., Yao, Y., Zuo, L., Shi, W., Gao, N., & Xu, H. (2015). Enhancement of tolerance of Ganoderma lucidumto cadmium by nitric oxide. Journal of Basic Microbiology, 56(1), 36–43. https://doi.org/10.1002/jobm.201500451

    Article  CAS  Google Scholar 

  • Gutleben, J., Chaib De Mares, M., van Elsas, J. D., Smidt, H., Overmann, J., & Sipkema, D. (2017). The multi-omics promise in context: From sequence to microbial isolate. Critical Reviews in Microbiology, 44(2), 212–229. https://doi.org/10.1080/1040841x.2017.1332003

    Article  CAS  Google Scholar 

  • Han, T.-W., Tseng, C.-C., Cai, M., Chen, K., Cheng, S.-Y., & Wang, J. (2020). Effects of cadmium on bioaccumulation, bioabsorption, and photosynthesis in Sarcodia suiae. International Journal of Environmental Research and Public Health, 17(4). https://doi.org/10.3390/ijerph17041294

  • Handelsman, J. (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669–685. https://doi.org/10.1128/mmbr.68.4.669-685.2004

    Article  CAS  Google Scholar 

  • Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245–R249. https://doi.org/10.1016/s1074-5521(98)90108-9

    Article  CAS  Google Scholar 

  • Hart, E. H., Creevey, C. J., Hitch, T., & Kingston-Smith, A. H. (2018). Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28827-7

  • Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., Andersen, G. L., Piceno, Y. M., Singh, N., Jansson, J. K., Probst, A., Borglin, S. E., Fortney, J. L., Stringfellow, W. T., Bill, M., Conrad, M. E., Tom, L. M., Chavarria, K. L., Alusi, T. R., Lamendella, R., Joyner, D. C., Spier, C., & Baelum, J. (2010). Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001), 204–208. https://doi.org/10.1126/science.1195979

    Article  CAS  Google Scholar 

  • Hazen, T. C. 2020. Lessons from the 2010 Deepwater Horizon accident in the Gulf of Mexico. In Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate, 847–864. Cham, Switzerland: Springer

  • He, L. M., & Tebo, B. (1998). Surface charge properties of and Cu (II) adsorption by spores of the marine Bacillus sp. strain SG-1. Applied and Environmental Microbiology, 64(3), 1123–1129. https://doi.org/10.1128/AEM.64.3.1123-1129.1998

    Article  CAS  Google Scholar 

  • He, Z., Deng, Y., Van Nostrand, J. D., Tu, Q., Xu, M., Hemme, C. L., Li, X., Wu, L., Gentry, T. J., Yin, Y., Liebich, J., Hazen, T. C., & Zhou, J. (2010). GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. The ISME Journal, 4(9), 1167–1179. https://doi.org/10.1038/ismej.2010.46

    Article  CAS  Google Scholar 

  • Herzberg, M., Bauer, L., Kirsten, A., & Nies, D. H. (2016). Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics, 8(3), 313–326. https://doi.org/10.1039/c5mt00295h

    Article  CAS  Google Scholar 

  • Hill, C. B., Czauderna, T., Klapperstück, M., Roessner, U., & Schreiber, F. (2015). Metabolomics, standards, and metabolic modeling for synthetic biology in plants. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00167

  • Hodkinson, B. P., & Grice, E. A. (2015). Next-generation sequencing: A review of technologies and tools for wound microbiome research. Advances in Wound Care, 4(1), 50–58. https://doi.org/10.1089/wound.2014.0542

    Article  Google Scholar 

  • Hou, J., Liu, W., Wu, L., Hu, P., Ma, T., Luo, Y., & Christie, P. (2017). Modulation of the efficiency of trace metal phytoremediation by Sedum plumbizincicola by microbial community structure and function. Plant and Soil, 421(1–2), 285–299.

    Article  CAS  Google Scholar 

  • Huang, F., Guo, C.-L., Lu, G.-N., Yi, X.-Y., Zhu, L.-D., & Dang, Z. (2014). Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, 109, 134–142. https://doi.org/10.1016/j.chemosphere.2014.01.066

    Article  CAS  Google Scholar 

  • Jebril, N., Boden, R., & Braungardt, C. (2022). Cadmium resistant bacteria mediated cadmium removal: a systematic review on resistance, mechanism and bioremediation approaches. IOP Conference Series: Earth and Environmental Science, 1002(1), 012006. https://doi.org/10.1088/1755-1315/1002/1/012006

    Article  Google Scholar 

  • Jehmlich, N., Kleinsteuber, S., Vogt, C., Benndorf, D., Harms, H., Schmidt, F., Von Bergen, M., & Seifert, J. (2010). Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. Journal of Applied Microbiology, 109(6), 1937–1945. https://doi.org/10.1111/j.1365-2672.2010.04823.x

    Article  CAS  Google Scholar 

  • Jovancicevic, V., Bockris, J. O’m., Carbajal, J. L., Zelenay, P., & Mizuno, T. (1987). ChemInform abstract: Adsorption and absorption of chloride ions on passive iron systems. ChemInform, 18(11). https://doi.org/10.1002/chin.198711027

  • Keum, Y. S., Seo, J. S., Li, Q. X., & Kim, J. H. (2008). Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Applied Microbiology and Biotechnology, 80(5), 863–872. https://doi.org/10.1007/s00253-008-1581-4

    Article  CAS  Google Scholar 

  • Khajavian, M., Wood, D. A., Hallajsani, A., & Majidian, N. (2019). Simultaneous biosorption of nickel and cadmium by the brown algae Cystoseria indica characterized by isotherm and kinetic models. Applied Biological Chemistry, 62(1). https://doi.org/10.1186/s13765-019-0477-6

  • Khalil, M., Iqbal, M., Turan, V., Tauqeer, H. M., Farhad, M., Ahmed, A., & Yasin, S. (2022). Household chemicals and their impact. Environmental Micropollutants, 201–232. https://doi.org/10.1016/b978-0-323-90555-8.00022-2

  • Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N., & Rehman, A. (2015). Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied Microbiology and Biotechnology, 99(24), 10745–10757. https://doi.org/10.1007/s00253-015-6901-x

    Article  CAS  Google Scholar 

  • Khan, M. I., Khisroon, M., Khan, A., Gulfam, N., Siraj, M., Zaidi, F., Ahmadullah, Abidullah, Fatima, S. H., Noreen, S., Hamidullah, Shah, Z. A., & Qadir, F. (2018). Bioaccumulation of heavy metals in water, sediments, and tissues and their histopathological effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan. BioMed Research International, 2018, 1–10. https://doi.org/10.1155/2018/1910274

    Article  CAS  Google Scholar 

  • Khatiwada, B., Hasan, M. T., Sun, A., Kamath, K. S., Mirzaei, M., Sunna, A., & Nevalainen, H. (2020). Proteomic response of Euglena gracilis to heavy metal exposure – Identification of key proteins involved in heavy metal tolerance and accumulation. Algal Research, 45, 101764. https://doi.org/10.1016/j.algal.2019.101764

    Article  Google Scholar 

  • Kim, S.-J., Jones, R. C., Cha, C.-J., Kweon, O., Edmondson, R. D., & Cerniglia, C. E. (2004). Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics, 4(12), 3899–3908. https://doi.org/10.1002/pmic.200400872

    Article  CAS  Google Scholar 

  • Kim, S. D., Bae, J. E., Park, H. S., & Cha, D. K. (2005). Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environmental Geochemistry and Health, 27(3), 229–235. https://doi.org/10.1007/s10653-004-3479-0

    Article  CAS  Google Scholar 

  • Kim, S. Y., Jin, M. R., Chung, C. H., Yun, Y.-S., Jahng, K. Y., & Yu, K.-Y. (2015). Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. Journal of Bioscience and Bioengineering, 119(4), 433–439. https://doi.org/10.1016/j.jbiosc.2014.09.022

    Article  CAS  Google Scholar 

  • Krumsiek, J., Mittelstrass, K., Do, K. T., Stückler, F., Ried, J., Adamski, J., Peters, A., Illig, T., Kronenberg, F., Friedrich, N., Nauck, M., Pietzner, M., Mook-Kanamori, D. O., Suhre, K., Gieger, C., Grallert, H., Theis, F. J., & Kastenmüller, G. (2015). Gender-specific pathway differences in the human serum metabolome. Metabolomics: Official journal of the Metabolomic Society, 11(6), 1815–1833. https://doi.org/10.1007/s11306-015-0829-0

    Article  CAS  Google Scholar 

  • Kumar Awasthi, M., Ravindran, B., Sarsaiya, S., Chen, H., Wainaina, S., Singh, E., Liu, T., Kumar, S., Pandey, A., Singh, L., & Zhang, Z. (2020). Metagenomics for taxonomy profiling: Tools and approaches. Bioengineered, 11(1), 356–374. https://doi.org/10.1080/21655979.2020.1736238

    Article  CAS  Google Scholar 

  • Leung, W. C., Chua, H., & Lo, W. (2001). Biosorption of heavy metals by bacteria isolated from activated sludge. Applied Biochemistry and Biotechnology, 91–93(1–9), 171–184. https://doi.org/10.1385/abab:91-93:1-9:171

    Article  Google Scholar 

  • Li, W., Chen, Y., & Wang, T. (2021). Cadmium biosorption by lactic acid bacteria Weissella viridescens ZY-6. Food Control, 123, 107747. https://doi.org/10.1016/j.foodcont.2020.107747

    Article  CAS  Google Scholar 

  • Liu, Y., Zhu, Q., Tayyab, M., Zhou, L., Lei, J., & Zhang, J. (2021). Single-atom Pt loaded zinc vacancies ZnO–ZnS induced type-V electron transport for efficiency photocatalytic H 2 evolution. Solar RRL, 5(11), 2100536. https://doi.org/10.1002/solr.202100536

    Article  CAS  Google Scholar 

  • Lu, H., Que, Y., Wu, X., Guan, T., & Guo, H. (2019). Metabolomics deciphered metabolic reprogramming required for biofilm formation. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49603-1.

  • Malekzadeh, R., & Shahpiri, A. (2017). Independent metal-thiolate cluster formation in C-terminal Cys-rich region of a rice type 1 metallothionein isoform. International Journal of Biological Macromolecules, 96, 436–441. https://doi.org/10.1016/j.ijbiomac.2016.12.047

    Article  CAS  Google Scholar 

  • Malla, M. A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., & Abd Allah, E. F. (2018). Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01132

  • Mallick, H., Franzosa, E. A., Mclver, L. J., et al. (2019). Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nature Communications, 10, 3136. https://doi.org/10.1038/s41467-019-10927-1

    Article  CAS  Google Scholar 

  • Mapelli, V., Olsson, L., & Nielsen, J. (2008). Metabolic footprinting in microbiology: Methods and applications in functional genomics and biotechnology. Trends in Biotechnology, 26(9), 490–497. https://doi.org/10.1016/j.tibtech.2008.05.008

    Article  CAS  Google Scholar 

  • Massoud, R., Khosravi-Darani, K., Sharifan, A., Asadi, G. H., & Younesi, H. (2020). The biosorption capacity of Saccharomyces Cerevisiae for cadmium in milk. Dairy, 1(2), 169–176. https://doi.org/10.3390/dairy1020011

    Article  Google Scholar 

  • Mattarozzi, M., Manfredi, M., Montanini, B., Gosetti, F., Sanangelantoni, A. M., Marengo, E., Careri, M., & Visioli, G. (2017). A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Analytical and Bioanalytical Chemistry, 409(9), 2327–2339. https://doi.org/10.1007/s00216-016-0175-8

    Article  CAS  Google Scholar 

  • Mazzei, V., Longo, G., Brundo, M. V., Sinatra, F., Copat, C., Oliveri Conti, G., & Ferrante, M. (2014). Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species. Ecotoxicology and Environmental Safety, 110, 269–279. https://doi.org/10.1016/j.ecoenv.2014.09.015

    Article  CAS  Google Scholar 

  • McMahon, M. A., Prakash, T. P., Cleveland, D. W., Bennett, C. F., & Rahdar, M. (2018). Chemically modified Cpf1-CRISPR RNAs mediate efficient genome editing in mammalian cells. Molecular Therapy, 26(5), 1228–1240. https://doi.org/10.1016/j.ymthe.2018.02.031

    Article  CAS  Google Scholar 

  • Medić, A., Stojanović, K., Izrael-Živković, L., Beškoski, V., Lončarević, B., Kazazić, S., & Karadžić, I. (2019). A comprehensive study of conditions of the biodegradation of a plastic additive 2,6-di-tert-butylphenol and proteomic changes in the degrader Pseudomonas aeruginosasan ai. RSC Advances, 9(41), 23696–23710. https://doi.org/10.1039/c9ra04298a

    Article  CAS  Google Scholar 

  • Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952. https://doi.org/10.1016/j.heliyon.2019.e02952

    Article  Google Scholar 

  • Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J., Charles, P., & Van Gijsegem, F. (1985). Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. Journal of Bacteriology, 162(1), 328–334. https://doi.org/10.1128/jb.162.1.328-334.1985

    Article  CAS  Google Scholar 

  • Mishra, A., & Malik, A. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews in Environmental Science and Technology, 43(11), 1162–1222. https://doi.org/10.1080/10934529.2011.627044

    Article  CAS  Google Scholar 

  • Monachese, M., Burton, J. P., & Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: A potential role for probiotics? Applied and Environmental Microbiology, 78(18), 6397–6404. https://doi.org/10.1128/aem.01665-12

    Article  CAS  Google Scholar 

  • Mónica A. Primost, Mónica N. Gil & Gregorio Bigatti, et al. (2017). High bioaccumulation of cadmium and other metals in Patagonian edible gastropods. Marine Biology Research, 13(7), 774–781. https://doi.org/10.1080/17451000.2017.1296163

  • Morris, R. M., Nunn, B. L., Frazar, C., Goodlett, D. R., Ting, Y. S., & Rocap, G. (2010). Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. The ISME Journal, 4(5), 673–685. https://doi.org/10.1038/ismej.2010.4

    Article  CAS  Google Scholar 

  • Nagvenkar, G. S., & Ramaiah, N. (2009). Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology, 19(4), 604–613. https://doi.org/10.1007/s10646-009-0429-8

    Article  CAS  Google Scholar 

  • Pan, Z., & Raftery, D. (2006). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387(2), 525–527. https://doi.org/10.1007/s00216-006-0687-8

    Article  CAS  Google Scholar 

  • Pandey, A., Tripathi, P. H., Tripathi, A. H., Pandey, S. C., & Gangola, S. (2019). Omics technology to study bioremediation and respective enzymes. Smart Bioremediation Technologies, 23–43. https://doi.org/10.1016/b978-0-12-818307-6.00002-0

  • Pei, J., Li, F., Xie, Y., Liu, J., Yu, T., & Feng, X. (2020). Microbial and metabolomic analysis of gingival crevicular fluid in general chronic periodontitis patients: Lessons for a predictive, preventive, and personalized medical approach. EPMA Journal, 11(2), 197–215. https://doi.org/10.1007/s13167-020-00202-5

    Article  Google Scholar 

  • Photolo, M. M., Sitole, L., Mavumengwana, V., & Tlou, M. G. (2021). Genomic and physiological investigation of heavy metal resistance from plant endophytic Methylobacterium Radiotolerans MAMP 4754, isolated from combretum erythrophyllum. International Journal of Environmental Research and Public Health, 18(3), 997. https://doi.org/10.3390/ijerph18030997

    Article  CAS  Google Scholar 

  • Phurailatpam, L., Dalal, V. K., Singh, N., & Mishra, S. (2022). Heavy metal stress alleviation through omics analysis of soil and plant microbiome. Frontiers in Sustainable Food Systems, 5, 817932. https://doi.org/10.3389/fsufs.2021.817932

    Article  Google Scholar 

  • Polak-Berecka, M., Boguta, P., Cieśla, J., Bieganowski, A., Skrzypek, T., Czernecki, T., & Waśko, A. (2016). Studies on the removal of Cd ions by gastrointestinal lactobacilli. Applied Microbiology and Biotechnology, 101(8), 3415–3425. https://doi.org/10.1007/s00253-016-8048-9

    Article  CAS  Google Scholar 

  • Prakash, A. A., Rajasekar, A., Sarankumar, R. K., AlSalhi, M. S., Devanesan, S., Aljaafreh, M. J., Govarthanan, M., & Sayed, S. R. M. (2021). Metagenomic analysis of microbial community and its role in bioelectrokinetic remediation of tannery contaminated soil. Journal of Hazardous Materials, 412, 125133. https://doi.org/10.1016/j.jhazmat.2021.125133

    Article  CAS  Google Scholar 

  • Primost, M. A., Gil, M. N., & Bigatti, G. (2017). High bioaccumulation of cadmium and other metals in Patagonian edible gastropods. Marine Biology Research, 13(7), 774–781. https://doi.org/10.1080/17451000.2017.1296163

    Article  Google Scholar 

  • Rahman, Md. S., & Sathasivam, K. V. (2015). Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models. BioMed Research International, 2015, 1–13. https://doi.org/10.1155/2015/126298

    Article  CAS  Google Scholar 

  • Rajesh, V., Kumar, A. S. K., & Rajesh, N. (2014). Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chemical Engineering Journal, 235, 176–185.

    Article  Google Scholar 

  • Ramos-Zúñiga, J., Gallardo, S., Martínez-Bussenius, C., Norambuena, R., Navarro, C. A., Paradela, A., & Jerez, C. A. (2019). Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. Journal of Proteomics, 198, 132–144.

    Article  Google Scholar 

  • Rashid, M., & Stingl, U. (2015). Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnology Advances, 33(8), 1755–1773. https://doi.org/10.1016/j.biotechadv.2015.09.005

    Article  CAS  Google Scholar 

  • Rasool, Bilal & Ansari, Mahmod-ur-Rahman & Zubair, Muhammad & Khan, Asaf & Ramzani, Pia & Dradrach, Agnieszka & Turan, Veysel & Iqbal, Muhammad & Khan, Shahbaz & Tauqeer, Hafiz & Farhad, Muniba & Virk, Zaheer. (2022). Synergetic efficacy of amending Pb-polluted soil with P-loaded jujube (Ziziphus mauritiana) twigs biochar and foliar chitosan application for reducing Pb distribution in Moringa leaf extract and improving its anti-cancer potential. Water, Air, & Soil Pollution. 233. https://doi.org/10.1007/s11270-022-05807-2.

  • Rodríguez, A., Castrejón-Godínez, M. L., Salazar-Bustamante, E., Gama-Martínez, Y., Sánchez-Salinas, E., Mussali-Galante, P., Tovar-Sánchez, E., & Ortiz-Hernández, M. L. (2020). Omics approaches to pesticide biodegradation. Current Microbiology, 77(4), 545–563. https://doi.org/10.1007/s00284-020-01916-5

    Article  CAS  Google Scholar 

  • Sandhu, M., Paul, A. T., & Jha, P. N. (2022). Metagenomic analysis for taxonomic and functional potential of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCB) degrading bacterial communities in steel industrial soil. PLOS ONE, 17(4), e0266808. https://doi.org/10.1371/journal.pone.0266808

    Article  CAS  Google Scholar 

  • Sarret, G., Manceau, A., & Spadini, L. (1998). Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environmental Science & Technology, 32(11), 1648–1655.

    Article  CAS  Google Scholar 

  • Sarret, G., Manceau, A., Spadini, L., Roux, J., Hazemann, J.-L., Soldo, Y., Eybert-Bérard, L., & Menthonnex, J. (1999). Structural determination of Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. Journal of Synchrotron Radiation, 6(3), 414–416. https://doi.org/10.1107/s0909049598014162

    Article  CAS  Google Scholar 

  • Satya, A., Harimawan, A., Haryani, G. S., Johir, Md. A. H., Vigneswaran, S., Ngo, H. H., & Setiadi, T. (2020). Batch study of cadmium biosorption by carbon dioxide enriched Aphanothece sp. dried biomass. Water, 12(1), 264. https://doi.org/10.3390/w12010264

    Article  CAS  Google Scholar 

  • Sharma, R. K., & Archana, G. (2016). Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Applied Soil Ecology, 107, 66–78. https://doi.org/10.1016/j.apsoil.2016.05.009

    Article  Google Scholar 

  • Sharma, P., Kumar, S., & Pandey, A. (2021). Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. Journal of Environmental Chemical Engineering, 9(4), 105684. https://doi.org/10.1016/j.jece.2021.105684

    Article  CAS  Google Scholar 

  • Sharma, P., Kumar, S., & Pandey, A. (2021). Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. Journal of Environmental Chemical Engineering, 9(4), 105684. https://doi.org/10.1016/j.jece.2021.105684

    Article  CAS  Google Scholar 

  • Shim, J., Kim, J.-W., & Shea, P. J. (2015). Biosorption of cadmium by Citrobacter sp. JH 11–2 isolated from mining site soil. Separation Science and Technology, 50(14), 2134–2141. https://doi.org/10.1080/01496395.2015.1041978

    Article  CAS  Google Scholar 

  • Siggins, A., Gunnigle, E., & Abram, F. (2012). Exploring mixed microbial community functioning: Recent advances in metaproteomics. FEMS Microbiology Ecology, 80(2), 265–280. https://doi.org/10.1111/j.1574-6941.2011.01284.x

    Article  CAS  Google Scholar 

  • Simmons, S. L., DiBartolo, G., Denef, V. J., Goltsman, D. S. A., Thelen, M. P., & Banfield, J. F. (2008). Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biology, 6(7), e177. https://doi.org/10.1371/journal.pbio.0060177

    Article  CAS  Google Scholar 

  • Singh, O. V. (2006). Proteomics and metabolomics: The molecular make-up of toxic aromatic pollutant bioremediation. Proteomics, 6(20), 5481–5492. https://doi.org/10.1002/pmic.200600200

    Article  CAS  Google Scholar 

  • Susanto, A., Kartika, R., & Koesnarpadi, S. (2019). Lead biosorption (Pb) and cadmium (Cd) by Flavobacterium sp bacteria. International Journal of Scientific and Technological Research, 8(11), 3611–3615.

    Google Scholar 

  • Tabrez, S., Zughaibi, T. A., & Javed, M. (2021). Bioaccumulation of heavy metals and their toxicity assessment in Mystus species. Saudi Journal of Biological Sciences, 28(2), 1459–1464. https://doi.org/10.1016/j.sjbs.2020.11.085

    Article  CAS  Google Scholar 

  • Tauqeer, H. M., Basharat, Z., Adnan Ramzani, P. M., Farhad, M., Lewińska, K., Turan, V., Karczewska, A., Khan, S. A., Faran, G. E., & Iqbal, M. (2022). Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. Environmental pollution (Barking, Essex: 1987), 313, 120064. https://doi.org/10.1016/j.envpol.2022.120064

    Article  CAS  Google Scholar 

  • Tayyab, M., Liu, Y., Liu, Z., Pan, L., Xu, Z., Yue, W., Zhou, L., Lei, J., & Zhang, J. (2022). One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production. Journal of Colloid and Interface Science, 628, 500–512. https://doi.org/10.1016/j.jcis.2022.08.071

    Article  CAS  Google Scholar 

  • Tian, R., Ning, D., He, Z., Zhang, P., Spencer, S. J., Gao, S., Shi, W., Wu, L., Zhang, Y., Yang, Y., Adams, B. G., Rocha, A. M., Detienne, B. L., Lowe, K. A., Joyner, D. C., Klingeman, D. M., Arkin, A. P., Fields, M. W., Hazen, T. C., & Stahl, D. A. (2020). Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00825-w

  • Trevors, J. T., Stratton, G. W., & Gadd, G. M. (1986). Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Canadian Journal of Microbiology, 32(6), 447–464. https://doi.org/10.1139/m86-085

    Article  CAS  Google Scholar 

  • Turan, V. (2019). Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicology and Environmental Safety, 183, 109594. https://doi.org/10.1016/j.ecoenv.2019.109594

    Article  CAS  Google Scholar 

  • Turan, V. (2020). Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere, 245, 125611. https://doi.org/10.1016/j.chemosphere.2019.125611

    Article  CAS  Google Scholar 

  • Turan, V. (2021). Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiologia Plantarum., 173(1), 418–429. https://doi.org/10.1111/ppl.13490

    Article  CAS  Google Scholar 

  • Turan, V., Ramzani, P. M. A., Ali, Q., Abbas, F., Iqbal, M., Irum, A., & Khan, W.-D. (2017). Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives of Agronomy and Soil Science, 64(8), 1053–1067. https://doi.org/10.1080/03650340.2017.1410542

    Article  CAS  Google Scholar 

  • Turan, V., Khan, S. A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P. M. A., & Fatima, M. (2018). Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety, 161, 409–419. https://doi.org/10.1016/j.ecoenv.2018.05.082

    Article  CAS  Google Scholar 

  • Turan, V., Aydın, S., & Sönmez, O. (2022). Production, cost analysis, and marketing of bioorganic liquid fertilizers and plant nutrition enhancers. Microorganisms for Sustainability, 193–198. https://doi.org/10.1007/978-981-19-6664-4_13.

  • Usman, K., Al-Ghouti, M. A., & Abu-Dieyeh, M. H. (2019). The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-42029-9

  • Vandera, E., Samiotaki, M., Parapouli, M., Panayotou, G., & Koukkou, A. I. (2015). Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. Journal of Proteomics, 113, 73–89. https://doi.org/10.1016/j.jprot.2014.08.018

    Article  CAS  Google Scholar 

  • VerBerkmoes, N. C., Denef, V. J., Hettich, R. L., & Banfield, J. F. (2009). Functional analysis of natural microbial consortia using community proteomics. Nature Reviews Microbiology, 7(3), 196–205. https://doi.org/10.1038/nrmicro2080

    Article  CAS  Google Scholar 

  • Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250. https://doi.org/10.1021/bp00033a001

    Article  CAS  Google Scholar 

  • Wang, J. H., Byun, J., & Pennathur, S. (2010). Analytical approaches to metabolomics and applications to systems biology. Seminars in Nephrology, 30(5), 500–511. https://doi.org/10.1016/j.semnephrol.2010.07.007

    Article  CAS  Google Scholar 

  • Wang, D.-Z., Xie, Z.-X., & Zhang, S.-F. (2014). Marine metaproteomics: Current status and future directions. Journal of Proteomics, 97, 27–35. https://doi.org/10.1016/j.jprot.2013.08.024

    Article  CAS  Google Scholar 

  • Wen Li, W., Li, Y. C., Chen, Y., Tao Wang, T., & Wang. (2021). Cadmium biosorption by lactic acid bacteria Weissella viridescens ZY-6. Food Control, 123, 107747. https://doi.org/10.1016/j.foodcont.2020.107747

    Article  CAS  Google Scholar 

  • Wilmes, P., & Bond, P. L. (2004). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 6(9), 911–920. https://doi.org/10.1111/j.1462-2920.2004.00687.x

    Article  CAS  Google Scholar 

  • Wright, R. J., Bosch, R., Gibson, M. I., & Christie-Oleza, J. A. (2020). Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environmental Science & Technology, 54(4), 2244–2256. https://doi.org/10.1021/acs.est.9b05228

    Article  CAS  Google Scholar 

  • Xia, L., Yin, C., Cai, L., Qiu, G., Qin, W., Peng, B., & Liu, J. (2010). Metabolic changes of Acidithiobacillus caldus under Cu2+ stress. Journal of Basic Microbiology., 50(6), 591–598.

    Article  CAS  Google Scholar 

  • Yu, Z., Pei, Y., & Zhao, S. (2021b). Meta transcriptomic analysis reveals active microbes and genes responded to short-term Cr(VI) stress. Ecotoxicology, 30, 1527–1537. https://doi.org/10.1007/s10646-020-02290-5

    Article  CAS  Google Scholar 

  • Yu, X., Zhao, J., Liu, X., Sun, L., Tian, J., & Wu, N. (2021a). Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.698834.

  • Yunusa, Y. R., & Umar, Z. D. (2021). Effective microbial bioremediation via the multi-omics approach: An overview of trends, problems and prospects. UMYU Journal of Microbiology Research (UJMR), 6(1), 127–145. https://doi.org/10.47430/ujmr.2161.017

    Article  Google Scholar 

  • Zhang, Y., Tao, S., Cao, J., & Coveney, R. M. (2006). Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science & Technology, 41(3), 683–687. https://doi.org/10.1021/es061545h

    Article  CAS  Google Scholar 

  • Zheng, L., Abhyankar, W., Ouwerling, N., Dekker, H. L., van Veen, H., van der Wel, N. N., Roseboom, W., de Koning, L. J., Brul, S., & de Koster, C. G. (2016). Bacillus subtilis spore inner membrane proteome. Journal of Proteome Researchs, 15(2), 585–594. https://doi.org/10.1021/acs.jproteome.5b00976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Institute of Biotechnology, Chandigarh University, Gharuan for giving us an opportunity to study the above topic.

Author information

Authors and Affiliations

Authors

Contributions

The paper writing was done by Dr. Sneh Lata and the final editing, as well as proofreading, was done by Dr. Sukhminderjit Kaur.

Corresponding author

Correspondence to Sukhminderjit Kaur.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lata, S., Sharma, S. & Kaur, S. OMICS Approaches in Mitigating Metal Toxicity in Comparison to Conventional Techniques Used in Cadmium Bioremediation. Water Air Soil Pollut 234, 148 (2023). https://doi.org/10.1007/s11270-023-06145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06145-7

Keywords

Navigation