Skip to main content
Log in

Effects of Heavy Metal-Polluted Soil (Pb, Zn, and Cd) on Seed Emergence, Seedling Growth, and Antioxidant Activity in Four Fabaceae Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mine tailings can contaminate large areas of neighboring agricultural lands due to the dispersion of heavy metals, which may lead to reduction in soil fertility and toxicity in crops. The use of Fabaceae species as green manure to amend the soil and enhance the removal of heavy metals is a promising research approach. As part of a phytoremediation project for abandoned mining sites combining woody species and agricultural crops, this study aims to identify the most suitable species to be used. Thus, four Fabaceae species (Vicia faba, Cicer arietinum, Lens culinaris, and Medicago arborea) were subjected to muti-metal-contaminated soil containing high concentrations of Pb, Zn, and Cd and to control soil for 15 days. Then, the emergence rate, growth parameters, lipid peroxidation, proline and hydrogen peroxide (H2O2) concentrations, antioxidant enzyme activities (catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX)), and heavy metals accumulation were evaluated. Results showed that V. faba was the most tolerant. A relative sensitivity at the germination stage was recorded for all species with the exception of V. faba. Metallic stress had no significant effect on thiobarbituric acid reactive susbtances (TBARS) and electrolyte leakage rates for both C. arietinum and V. faba. The latter also showed the highest proline concentration and relatively low antioxidant enzyme activities. All species showed high Pb, Zn, and Cd root contents. V. faba had the lowest translocation factors of Pb and Zn and the lowest bioaccumulation factors of Zn and Cd, which underline its phytostabilizing potential and support its use as green manure for heavy metals contaminated soils amendement and rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available from the corresponding author on reasonable request (zoubeir.bejaoui@fsb.ucar.tn).

This article does not contain any studies with human subjects or animals performed by any of the authors.

References

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630–633.

    Article  Google Scholar 

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Aghili, F., Gamper, H. A., Eikenberg, J., Khoshgoftarmanesh, A. H., Afyuni, M., Schulin, R., ... & Frossard, E. (2014). Green manure addition to soil increases grain zinc concentration in bread wheat. PloS one, 9(7), e101487 https://doi.org/10.1371/journal.pone.0101487

  • Ai, Y. J., Li, F. P., Gu, H. H., Chi, X. J., Yuan, X. T., & Han, D. Y. (2020). Combined effects of green manure returning and addition of sewage sludge compost on plant growth and microorganism communities in gold tailings. Environmental Science and Pollution Research, 27, 31686–31698. https://doi.org/10.1007/s11356-020-09118-z

    Article  CAS  Google Scholar 

  • Alcántara, C., Soriano, A., Saavedra, M., & Gómez, J. A. (2017). Sistemas de manejo del suelo. In D. Barranco Navero, R. Fernández Escobar, & L. Rallo Romero (Eds.), El cultivo del olivo (7th ed., pp 335–417). Mundi-Prensa.

  • Alexander, P. D., Alloway, B. J., & Dourado, A. M. (2006). Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 144(3), 736–745.

    Article  CAS  Google Scholar 

  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341.

    Article  CAS  Google Scholar 

  • Amari, T., Ghnaya, T., & Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99–110. https://doi.org/10.1016/j.sajb.2017.03.011

    Article  CAS  Google Scholar 

  • Ashraf, C. M., & Abu-Shakra, S. (1978). Wheat seed germination under low temperature and moisture stress 1. Agronomy Journal, 70(1), 135–139.

    Article  Google Scholar 

  • Bacchetta, G. I. A. N. L. U. I. G. I., Cappai, G., Carucci, A., & Tamburini, E. (2015). Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environments. Bulletin of Environmental Contamination and Toxicology, 94(3), 326–333. https://doi.org/10.1007/s00128-015-1467-y

    Article  CAS  Google Scholar 

  • Baghaie, A. H., & Aghilizefreei, A. (2020). Iron enriched green manure can increase wheat Fe concentration in Pb-polluted soil in the presence of Piriformospora indica (P. indica). Soil and Sediment Contamination: An International Journal, 29(7), 721–743. https://doi.org/10.1080/15320383.2020.1771274

    Article  CAS  Google Scholar 

  • Bai, Y. C., Zuo, W. G., Zhao, H. T., Mei, L. J., Gu, C. H., Guan, Y. X., ... & Feng, K. (2017). Distribution of heavy metals in maize and mudflat saline soil amended by sewage sludge. Journal of Soils and Sediments, 17(6), 1565-1578https://doi.org/10.1007/s11368-016-1630-z

  • Bankaji, I., Caçador, I., & Sleimi, N. (2015). Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: Growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Environmental Science and Pollution Research, 22(17), 13058–13069. https://doi.org/10.1007/s11356-015-4414-x

    Article  CAS  Google Scholar 

  • Bankaji, I., Cacador, I., & Sleimi, N. (2016). Assessing of tolerance to metallic and saline stresses in the halophyte Suaeda fruticosa: The indicator role of antioxidative enzymes. Ecological Indicators, 64, 297–308.

    Article  CAS  Google Scholar 

  • Bankaji, I., Pérez-Clemente, R. M., Caçador, I., & Sleimi, N. (2019). Accumulation potential of Atriplex halimus to zinc and lead combined with NaCl: Effects on physiological parameters and antioxidant enzymes activities. South African Journal of Botany, 123, 51–61. https://doi.org/10.1016/j.sajb.2019.02.011

    Article  CAS  Google Scholar 

  • Baruah, N., Mondal, S. C., Farooq, M., & Gogoi, N. (2019). Influence of heavy metals on seed germination and seedling growth of wheat, pea, and tomato. Water, Air, & Soil Pollution, 230(12), 1–15. https://doi.org/10.1007/s11270-019-4329-0

    Article  CAS  Google Scholar 

  • Bhatti, S. S., Sambyal, V., & Nagpal, A. K. (2018). Analysis of genotoxicity of agricultural soils and metal (Fe, Mn, and Zn) accumulation in crops. International Journal of Environmental Research, 12(4), 439–449.

    Article  CAS  Google Scholar 

  • Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science, 21(1), 43–47.

    Article  Google Scholar 

  • Botelho, R. V., & Müller, M. M. L. (2020). Nutrient redistribution in fruit crops: Physiological implications. In A. K. Srivastava, & H. Chengxiao (Eds.), Fruit crops: Diagnosis and management of nutrient constraints (pp. 33–46). Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00003-4

  • Bouslimi, H., Ferreira, R., Dridi, N., Brito, P., Martins-Dias, S., Caçador, I., & Sleimi, N. (2021). Effects of barium stress in Brassica juncea and Cakile maritima: The indicator role of some antioxidant enzymes and secondary metabolites. Phyton, 90(1), 145. https://doi.org/10.32604/phyton.2020.011752

    Article  Google Scholar 

  • Boussen, S., Sebei, A., Soubrand-Colin, M., Bril, H., Chaabani, F., & Abdeljaouad, S. (2010). Mobilization of lead-zinc rich particles from mine tailings in northern Tunisia by aeolian and run-off processes. Bulletin De La Société Géologique De France, 181(5), 459–471.

    Article  Google Scholar 

  • Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., & Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192, 227–236.

    Article  CAS  Google Scholar 

  • Chaabani, S., Abdelmalek-Babbou, C., Ahmed, H. B., Chaabani, A., & Sebei, A. (2017). Phytoremediation assessment of native plants growing on Pb–Zn mine site in Northern Tunisia. Environmental Earth Sciences, 76(16), 1–15. https://doi.org/10.1007/s12665-017-6894-0

    Article  CAS  Google Scholar 

  • Cheng, X., Drozdova, J., Danek, T., Huang, Q., Qi, W., Yang, S., ... & Zhao, X. (2018). Pollution assessment of trace elements in agricultural soils around copper mining area. Sustainability, 10(12), 4533https://doi.org/10.3390/su10124533

  • Cooper, J. E., & Scherer, H. W. (2012). Nitrogen fixation. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 389–408). Academic Press.

  • Cuypers, A., Hendrix, S., Amaral dos Reis, R., De Smet, S., Deckers, J., Gielen, H., Jozefczak, M., Loix, C., Vercampt, H., Vangronsveld, J., & Keunen, E. (2016). Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Frontiers in Plant Science, 7, 470. https://doi.org/10.3389/fpls.2016.00470

    Article  Google Scholar 

  • Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2016). Proline accumulation in plants: Roles in stress tolerance and plant development. In N. Iqbal, R. Nazar, & N. A. Khan (Eds.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies (pp. 155–166). Springer. https://doi.org/10.1007/978-81-322-2616-1_9.

  • Debouza, N. E., Thruppoyil, S. B., Gopi, K., Zain, S., & Ksiksi, T. (2021). Plant and seed germination responses to global change, with a focus on CO2: A review. One Ecosystem, 6, e74260. https://doi.org/10.3897/oneeco.6.e74260

    Article  Google Scholar 

  • Doumas, P., Munoz, M., Banni, M., Becerra, S., Bruneel, O., Casiot, C., Cleyet-Marel, J. C., Gardon, J., Noack, Y., & Sappin-Didier, V. (2018). Polymetallic pollution from abandoned mines in Mediterranean regions: a multidisciplinary approach to environmental risks. Regional environmental change, 18(3), 677–692. https://doi.org/10.1007/s10113-016-0939-x

    Article  Google Scholar 

  • El-Amier, Y., Elhindi, K., El-Hendawy, S., Al-Rashed, S., & Abd-ElGawad, A. (2019). Antioxidant system and biomolecules alteration in Pisum sativum under heavy metal stress and possible alleviation by 5-aminolevulinic acid. Molecules, 24(22), 4194. https://doi.org/10.3390/molecules24224194

    Article  CAS  Google Scholar 

  • Elouear, Z., Bouhamed, F., Boujelben, N., & Bouzid, J. (2016). Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine. NE Tunisia. Environmental Earth Sciences, 75(3), 254. https://doi.org/10.1007/s12665-015-5035-x

    Article  CAS  Google Scholar 

  • Feller, C., Blanchart, E., Bernoux, M., Lal, R., & Manlay, R. (2012). Soil fertility concepts over the past two centuries: The importance attributed to soil organic matter in developed and developing countries. Archives of Agronomy and Soil Science, 58(sup1), S3–S21. https://doi.org/10.1080/03650340.2012.693598

    Article  Google Scholar 

  • Feng, Z. T., Deng, Y. Q., Fan, H., Sun, Q. J., Sui, N., & Wang, B. S. (2014). Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. Photosynthetica, 52(2), 313–320. https://doi.org/10.1007/s11099-014-0032-y

    Article  CAS  Google Scholar 

  • Fielding, J. L., & Hall, J. L. (1978). A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum: II. Distribution of enzymes in relation to root development. Journal of Experimental Botany, 29(4), 983–991.

    Article  CAS  Google Scholar 

  • Filippou, P., Bouchagier, P., Skotti, E., & Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1–10.

    Article  CAS  Google Scholar 

  • Gebeyehu, H. R., & Bayissa, L. D. (2020). Levels of heavy metals in soil and vegetables and associated health risks in Mojo area. Ethiopia. Plos One, 15(1), e0227883. https://doi.org/10.1371/journal.pone.0227883

    Article  CAS  Google Scholar 

  • Ghorbel, M. (2012). Contamination métallique issue des dechets de l’ancien site minier de Jebel Ressas: modélisation des mécanismes de transfert et conception de cartes d’aléa post- mine dans un contexte carbonaté et sous un climat semi-aride. Evaluation du risque pour la santé humaine. Doctoral thesis. University Paul Sabatier - Toulouse III, France. Retrieved October 19, 2017, from https://tel.archives-ouvertes.fr/tel-00760685/document

  • Ghorbel, M., Munoz, M., Courjault-Radé, P., Destrigneville, C., de Parseval, P., Souissi, R., ... & Abdeljaouad, S. (2010). Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miners’ village of Jebel Ressas (NE Tunisia). European Journal of Mineralogy22(5), 639-649

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  Google Scholar 

  • Giri, S., Singh, A. K., & Mahato, M. K. (2017). Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India. Journal of Earth System Science, 126(4), 1–13. https://doi.org/10.1007/s12040-017-0833-z

    Article  CAS  Google Scholar 

  • Grotkopp, E., Rejmánek, M., & Rost, T. L. (2002). Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist, 159(4), 396–419.

    Article  Google Scholar 

  • Gutiérrez, M., Mickus, K., & Camacho, L. M. (2016). Abandoned PbZn mining wastes and their mobility as proxy to toxicity: A review. Science of the Total Environment, 565, 392–400. https://doi.org/10.1016/j.scitotenv.2016.04.143

    Article  CAS  Google Scholar 

  • Hachani, C., Lamhamedi, M. S., Cameselle, C., Gouveia, S., Zine El Abidine, A., Khasa, D. P., & Béjaoui, Z. (2020). Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and Cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa. Microorganisms, 8(12), 2033. https://doi.org/10.3390/microorganisms8122033

    Article  CAS  Google Scholar 

  • Hachani, C., Lamhamedi, M. S., Zine El Abidine, A., Abassi, M., Khasa, D. P., & Béjaoui, Z. (2022). Water relations, gas exchange, chlorophyll fluorescence and electrolyte leakage of ectomycorrhizal Pinus halepensis seedlings in response to multi-heavy metal stresses (Pb, Zn, Cd). Microorganisms, 10(1), 57. https://doi.org/10.3390/microorganisms10010057

    Article  CAS  Google Scholar 

  • Hameed, A., Rasool, S., Azooz, M. M., Hossain, M. A., Ahanger, M. A., & Ahmad, P. (2016). Heavy metal stress: Plant responses and signalling. In P. Ahmad (Ed.), Plant metal interaction: Emerging remediation techniques (pp. 557–583). Elsevier.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., ... & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681https://doi.org/10.3390/antiox9080681

  • Hattab, S., Hattab, S., Flores-Casseres, M. L., Boussetta, H., Doumas, P., Hernandez, L. E., & Banni, M. (2016). Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environmental and Experimental Botany, 123, 1–12.

    Article  CAS  Google Scholar 

  • He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., & Stoffella, P. J. (2015). Heavy metal contamination of soils: Sources, indicators and assessment. Journal of Environmental Indicators, 9, 17–18.

    Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189–198.

    Article  CAS  Google Scholar 

  • International Seed Testing Association (ISTA). (2012). International rules for seed testing. Bassersdorf, Switzerland. Retrieved September 28, 2017, from https://www.seedtest.org/en/publications/international-rules-seed-testing-1168.html

  • Islam, E., Yang, X., Li, T., Liu, D., Jin, X., & Meng, F. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 147(3), 806–816.

    Article  CAS  Google Scholar 

  • Júnior, C. A. L., Oliveira, S. R., Mazzafera, P., & Arruda, M. A. Z. (2016). Expanding the information about the influence of cadmium on the metabolism of sunflowers: Evaluation of total, bioavailable, and bioaccessible content and metallobiomolecules in sunflower seeds. Environmental and Experimental Botany, 125, 87–97. https://doi.org/10.1016/j.envexpbot.2016.02.003

    Article  CAS  Google Scholar 

  • Karaca, O., Cameselle, C., & Reddy, K. R. (2018). Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Bio/technology, 17(1), 205–228.

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    Article  CAS  Google Scholar 

  • Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research, 22(18), 13772–13799. https://doi.org/10.1007/s11356-015-4881-0

    Article  CAS  Google Scholar 

  • Kicińska, A., & Wikar, J. (2021). Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry-example from southern Poland. Soil and Tillage Research, 205, 104817. https://doi.org/10.1016/j.still.2020.104817

    Article  Google Scholar 

  • Lamhamedi, M. S., Renaud, M., Desjardins, P., & Veilleux, L. (2013). Root growth, plug cohesion, mineral nutrition, and carbohydrate content of (1+ 0) Picea mariana seedlings in response to a short-day treatment. Tree Planters’ Notes, 56(1), 35–46.

    Google Scholar 

  • Li, W., Khan, M. A., Yamaguchi, S., & Kamiya, Y. (2005). Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 46(1), 45–50. https://doi.org/10.1007/s10725-005-6324-2

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Liu, S., Yang, C., Xie, W., Xia, C., & Fan, P. (2012). The effects of cadmium on germination and seedling growth of Suaeda salsa. Procedia Environmental Sciences, 16, 293–298. https://doi.org/10.1016/j.proenv.2012.10.041

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, Y., Lu, H., Lonappan, L., Brar, S. K., He, L., ... & Yang, S. (2018). Biochar application as a soil amendment for decreasing cadmium availability in soil and accumulation in Brassica chinensis. Journal of Soils and Sediments, 18(7), 2511-2519https://doi.org/10.1007/s11368-018-1927-1

  • Ma, L., Sun, J., Yang, Z., & Wang, L. (2015). Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou. Southern China. Environmental Monitoring and Assessment, 187(12), 1–9.

    CAS  Google Scholar 

  • Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environmental Pollution, 110(3), 375–391.

    Article  CAS  Google Scholar 

  • Mahmud, J. A., Bhuyan, M. B., Nahar, K., Parvin, K., & Hasanuzzaman, M. (2020). Response and tolerance of fabaceae plants to metal/metalloid toxicity. In M. Hasanuzzaman, S. Araújo, & S. Gill (Eds.), The plant family Fabaceae (pp. 435–482). Springer. https://doi.org/10.1007/978-981-15-4752-2_17

  • Mateos-Naranjo, E., Castellanos, E. M., & Perez-Martin, A. (2014). Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environmental and Experimental Botany, 100, 114–121.

    Article  CAS  Google Scholar 

  • Medyńska-Juraszek, A., Bednik, M., & Chohura, P. (2020). Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. International Journal of Environmental Research and Public Health, 17(21), 7861. https://doi.org/10.3390/ijerph17217861

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/technology, 7(1), 47–59.

    Article  CAS  Google Scholar 

  • Mlayah, A., Da Silva, E. F., Rocha, F., Hamza, C. B., Charef, A., & Noronha, F. (2009). The Oued Mellègue: Mining activity, stream sediments and dispersion of base metals in natural environments. North-Western Tunisia. Journal of Geochemical Exploration, 102(1), 27–36.

    Article  CAS  Google Scholar 

  • Monneveux, P., & Nemmar, M. (1986). Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): étude de l’accumulation de la proline au cours du cycle de développement. Agronomie, 6(6), 583–590.

    Article  Google Scholar 

  • Nadgórska-Socha, A., Kafel, A., Kandziora-Ciupa, M., Gospodarek, J., & Zawisza-Raszka, A. (2013). Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environmental Science and Pollution Research, 20(2), 1124–1134. https://doi.org/10.1007/s11356-012-1191-7

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nguyen, N. L., Vu, C. T., To, H. M., Pham, H. N., Nguyen, H. D., Nguyen, T. D., & Nguyen Thi, K. O. (2020). The interactions among the heavy metals in soils and in weeds and their antioxidant capacity under the mining activities in Thai Nguyen Province, Vietnam. Journal of Chemistry, 2020https://doi.org/10.1155/2020/8010376

  • Othmani, M. A., Souissi, F., Benzaazoua, M., Bouzahzah, H., Bussiere, B., & Mansouri, A. (2013). The geochemical behaviour of mine tailings from the Touiref Pb–Zn District in Tunisia in weathering cells leaching tests. Mine Water and the Environment, 32(1), 28–41.

    Article  CAS  Google Scholar 

  • Pais, I., & Jones, J. B. (1997). The handbook of trace elements. CRC Press.

  • Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., & Parsons, J. G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727–734.

  • Pinto, A. P., De Varennes, A., Fonseca, R., & Teixeira, D. M. (2015). Phytoremediation of soils contaminated with heavy metals: Techniques and strategies. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: Management of environmental contaminants (pp. 133–155). Springer. https://doi.org/10.1007/978-3-319-10395-2_10

  • Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. In D. Whitacre (Ed.), Reviews of environmental contamination and toxicology (vol. 213, pp. 113–136). Springer. https://doi.org/10.1007/978-1-4419-9860-6_4

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system. In A. Singh, S. M. Prasad, & R. P. Singh (Eds.), Plant responses to xenobiotics (pp. 127–140). Springer. https://doi.org/10.1007/978-981-10-2860-1_6

  • Ramos, S. J., Gastauer, M., Mitre, S. K., Caldeira, C. F., Silva, J. R., Neto, A. E. F., ... & Siqueira, J. O. (2020). Plant growth and nutrient use efficiency of two native Fabaceae species for mineland revegetation in the eastern Amazon. Journal of Forestry Research, 31(6), 2287–2293. https://doi.org/10.1007/s11676-019-01004-w

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181.

    Article  CAS  Google Scholar 

  • Rucinska-Sobkowiak, R. (2010). Stres oksydacyjny wywołany działaniem metali ciężkich na rośliny. Postępy Biochemii, 56(2).

  • Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277

    Article  CAS  Google Scholar 

  • Sergiev, I., Alexieva, V., & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus De L’academie Bulgare Des Sciences, 51(3), 121–124.

    Google Scholar 

  • Shu, X., Yin, L., Zhang, Q., & Wang, W. (2012). Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19(3), 893–902. https://doi.org/10.1007/s11356-011-0625-y

    Article  CAS  Google Scholar 

  • Singh, S. N., Goyal, S. K., Rai, J. P., & Singh, S. R. (2014). Heavy metal accumulation in plants grown in peri-urban metal contaminated areas of eastern UP. Agriways, 2(1), 8–11.

    Google Scholar 

  • Smirnoff, N., & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221(3), 1197–1214. https://doi.org/10.1111/nph.15488

    Article  CAS  Google Scholar 

  • Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6), 13561–13578. https://doi.org/10.3390/ijms160613561

    Article  CAS  Google Scholar 

  • Souguir, D. (2009). Modifications métaboliques, moléculaires et génotoxicité induites par le cadmium chez Vicia faba. Doctoral thesis. University Blaise Pascal - Clermont-Ferrand II; University of Auvergne - Clermont-Ferrand I; University of Carthage, Tunisia. Retrieved January 07, 2019, from https://core.ac.uk/download/pdf/49293456.pdf

  • Steel, G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). The McGraw-Hill Companies Inc.

    Google Scholar 

  • Timmer, V. R., & Miller, B. D. (1991). Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings. New Forests, 5(4), 335–348.

    Article  Google Scholar 

  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645–655.

    Article  CAS  Google Scholar 

  • Wang, F., Zhang, S., Cheng, P., Zhang, S., & Sun, Y. (2020). Effects of soil amendments on heavy metal immobilization and accumulation by maize grown in a multiple-metal-contaminated soil and their potential for safe crop production. Toxics, 8, 102. https://doi.org/10.3390/toxics8040102

    Article  CAS  Google Scholar 

  • Wei, W., Ma, R., Sun, Z., Zhou, A., Bu, J., Long, X., & Liu, Y. (2018). Effects of mining activities on the release of heavy metals (HMs) in a typical mountain headwater region, the Qinghai-Tibet Plateau in China. International Journal of Environmental Research and Public Health, 15(9), 1987. https://doi.org/10.3390/ijerph15091987

    Article  CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environment International, 30(5), 685–700.

    Article  CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80(3), 623–633.

    Article  CAS  Google Scholar 

  • Xu, X., Liu, C., Zhao, X., Li, R., & Deng, W. (2014). Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.). Bulletin of environmental contamination and toxicology, 93(5), 618–624.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pr. Noura Ben Youssef, head of the Laboratory of Field Crops at the National Institute of Agronomic Research of Tunisia (INRAT), for providing the seeds used in this study. We also thank Salima Bahri, engineer in statistics and information analysis in INRGREF, for performing the statistical analyses. We are greatful to the nursery staff of INGRREF for their help during the collection of soil samples.

Funding

This research was supported by the University of Carthage and the National Institue of Research in Rural Engineering, Water and Forests (INRGREF), Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoubeir Béjaoui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachani, C., Lamhamedi, M.S., Abassi, M. et al. Effects of Heavy Metal-Polluted Soil (Pb, Zn, and Cd) on Seed Emergence, Seedling Growth, and Antioxidant Activity in Four Fabaceae Species. Water Air Soil Pollut 233, 263 (2022). https://doi.org/10.1007/s11270-022-05725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05725-3

Keywords

Navigation