Skip to main content

Advertisement

Log in

Historical Record of Magnetic and Geochemical Signals in Mountain Peat Bogs: A Case Study of the Black Triangle Region (the Izery Mountains, SW Poland)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Peat bogs are effective archives of magnetic particles. The diamagnetic properties of organic matter with a zero or slightly negative value of magnetic susceptibility provide an excellent background to even small amounts of magnetic particles associated with anthropogenic activity. To the best of our knowledge, this is the first record of the technogenic magnetic particle (TMP) and potentially toxic element (PTE) contamination derived from peat archives of the study area. The investigated ombrotrophic peat bog in a historically heavily industrialized area provides an excellent starting point for future studies on the magnetic recorder and/or long-term stability properties of peatlands as archives of industrial activities. The main aim of this work was to assess the extent of overlap between the accumulation of TMPs with PTEs and iron in the peat profile and the periods of anthropogenic activity, using radiocarbon (14C) and lead (210Pb) dating methods. In peat profiles, an enrichment in PTEs and iron was observed, corresponding to the period of maximum exploitation of lignite and lignite-based power plants in the “Black Triangle” region, as well as the exploitation of metal ores from the eighteenth century to the end of the 1990s in the twentieth century. Local influences related to the operation of the nearby glasswork and the exploitation of local tin and uranium ores were recorded in the peat layers corresponding to the time span 1774–1879 in the form of increased concentrations of As, Cu, Fe, Pb, Se, Sn, Th, Ti, U, and Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Allan, M., Le Roux, G., De Vleeschouwer, F., Bindler, R., Blaauw, M., Piotrowska, N., Sikorski, J., & Fagel, N. (2013). High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrothropic peat cores in Hautes-Fagnes, Belgium. Environ Pollut, 178, 381–394. https://doi.org/10.1016/j.envpol.2013.03.018

    Article  CAS  Google Scholar 

  • Benoit, J. M., Fitzgerald, W. F., & Damman, A. W. H. (1998). The biogeochemistry of an ombrotrophic bog: Evaluation of use as an archive of atmospheric mercury deposition. Environ Res, 78, 118–133. https://doi.org/10.1006/enrs.1998.3850

    Article  CAS  Google Scholar 

  • Blažková, M. (1996). Black Triangle — The Most Polluted Part of Central Europe. In Rijtema, P.E., Eliáš, V. (Eds.). Regional Approaches to Water Pollution in the Environment. NATO ASI Series, vol 20. Springer. https://doi.org/10.1007/978-94-009-0345-6_11

  • Bohdálková, L., Bohdáleka, P., Břízováa, E., Pacherováa, P., & Kuběnac, A. A. (2018). Atmospheric metal pollution records in the Kovářská Bog (Czech Republic) as an indicator of anthropogenic activities over the last three millennia. Sci Total Environ, 633, 857–874. https://doi.org/10.1016/j.scitotenv.2018.03.142

    Article  CAS  Google Scholar 

  • Borzęcki, R., Wójcik, D., & Kalisz, M. (2018). Pozostałość Górnictwa rud uranu, toru i kruszców w rejonie Jeleniej Góry i Szklarskiej Poręby (Remains of the mining of uranium, thorium and ores in the area of Jelenia Góra and Szklarska Poręba). Hereditas Minariorum, 5, 85–121. in Polish.

    Google Scholar 

  • Bouska, V., & Pesek, J. (1999). Quality parameters of lignite of the north bohemian basin in the Czech Republic in comparison with the world average lignite. Int J Coal Geol, 40(2–3), 211–235. https://doi.org/10.1016/S0166-5162(98)00070-6

    Article  CAS  Google Scholar 

  • Bronk Ramsey, C. (1995). Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon, 37(2), 425–430. https://doi.org/10.1017/S0033822200030903

    Article  CAS  Google Scholar 

  • Chambers, F. M., Booth, R. K., De Vleeschouwer, F., Lamentowicz, M., Le Roux, G., Mauquoy, D., Nichols, J. E., & van Geel, B. (2012). Development and refinement of proxy-climate indicators from peats. Quat Int, 268, 21–33. https://doi.org/10.1016/j.quaint.2011.04.039

    Article  Google Scholar 

  • Chaparro, M. A. E., Ramírez-Ramírez, M., Chaparro, M. A. E., Miranda-Avilés, R., Puy-Alquiza, M. J., Böhnel, H. N., & Zanor, G. A. (2020). Magnetic parameters as proxies for anthropogenic pollution in water reservoir sediments from Mexico: An interdisciplinary approach. Sci Total Environ, 700, 134343. https://doi.org/10.1016/j.scitotenv.2019.134343

    Article  CAS  Google Scholar 

  • Chester, R., & Stoner, J. H. (1973). Pb in particulates from the lower atmosphere of the eastern Atlantic. Nature, 245, 27–28. https://doi.org/10.1038/245027b0

    Article  CAS  Google Scholar 

  • CLRTAP (1979). Convention on long-range transboundary air pollution. Geneve, November 13th, 1979.

  • Coleman, D. O. (1985). Peat. In: MARC (ed.), Historical monitoring. Technical Report, 31, 155–173. MARC, Chelsea College, London.

  • Clymo, R. S., & Mackay, D. (1987). Upwash and downwash of pollen and spores in the unsaturated surface layers of Sphagnum-dominated peat. New Phytol, 105, 175–183. https://doi.org/10.1111/j.1469-8137.1987.tb00120.x

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Stoermer, E. F. (2000). The Anthropocene. IGBP Global Change Newsletter, 41, 17–18. https://doi.org/10.1007/3-540-26590-2_3

    Article  Google Scholar 

  • Dasch, J. M., & Wolff, G. T., (1988). Trace inorganic species in precipitation and their potential use in source apportionment studies. Water Air Soil Pollut, 42, 401–412, https://doi.org/10.1007/BF00279205

  • Dolnickova, D., Drozdova, J., Raclawsky, K., & Juchelkova, D. (2012). Geochemistry of trace elements in fly-ashes from lignite fired power stations. J Polish Mineral Eng, 1–6, 59–68.

    Google Scholar 

  • Farmer, J. G., MacKenzie, A. B., Sugden, C. L., Edgar, P. J., & Eades, L. J. (1997). A comparison of the historical lead pollution records in peat and freshwater lake sediments from central Scotland. Water Air Soil Pollut, 100, 253–270. https://doi.org/10.1023/A:1018320425006

    Article  CAS  Google Scholar 

  • Farmer, J. G., Graham M. C., Bacon, J. R., Dunn, S. M., Vinogradoff, S. I., & MacKenzie, A. B. (2005). Isotopic characterisation of the historical lead deposition record at Glensaugh, an organic-rich, upland catchment in rural N.E. Scotland. Sci Total Environ, 346, 1–3. https://doi.org/10.1016/j.scitotenv.2004.11.020

  • Gao, K., Pearce, J., Jones, J., & Taylor, C. (1999). Interaction between peat, humic acid and aqueous metal ions. Environ Geochem Health, 21, 13–26. https://doi.org/10.1023/A:1006592627852

    Article  CAS  Google Scholar 

  • Givelet, N., Roos-Barraclough, F., & Shotyk, W. (2003). Predominant anthropogenic sources and rates of atmospheric mercury accumulation in southern Ontario recorded by peat cores from three bogs: Comparison with natural “background” values (past 8000 years). J Environ Monitor, 5, 935–949. https://doi.org/10.1039/B307140E

    Article  CAS  Google Scholar 

  • Grattan, J. P., Gilbertson, D. D., & Hunt, C. O. (2007). The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. J Archaeol Sci, 34, 83–110. https://doi.org/10.1016/j.jas.2006.04.004

    Article  Google Scholar 

  • Hong, S., Candelone, J. P., Patterson, C. C., & Boutron, C. F., (1994). Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilisations. Science, 265:1841–1843. https://doi.org/10.1126/science.265.5180.1841.

  • Hua, Q., Barbetti, M., & Rakowski, A. J. (2013). Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55(4), 2059–2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177

    Article  CAS  Google Scholar 

  • Hulett, L. D., Weinberger, A. J., Northcutt, K. J., & Ferguson, M. (1980). Chemical species in fly-ash from coal-burning power plant. Science, 210, 1356–1358. https://doi.org/10.1126/science.210.4476.1356.

  • Hvatum, O., Bølviken, B., & Steinnes, E. (1983). Heavy metals in Norwegian ombrotrophic bogs. Environ Biogeochem Ecol Bull, 35, 351–356.

    CAS  Google Scholar 

  • Hynes, M.J., Forde, S., & Jonson, B. (2004). Element migration from glass compositions containing no added lead. Sci Total Environ, 319(1–3), 39–52. https://doi.org/10.1016/S0048-9697(03)00409-1

  • Jones, J. M., & Hao, J. (1993). Ombrotrophic peat as a medium for historical monitoring of heavy metal pollution. Environ Geochem Health, 15, 67–74. https://doi.org/10.1007/BF02627824

    Article  CAS  Google Scholar 

  • Jordanova, D., Petrov, P., Hoffmann, V., Gocht, T., Panaiotu, C., Tsacheva, T., & Jordanova, N. (2010). Magnetic signature of different vegetation species in polluted environment. Studia Geophysica Et Geodaetica, 54, 417–442. https://doi.org/10.1007/s11200-010-0025-7

    Article  Google Scholar 

  • Kapička, A., Petrovský, E., & Grison, H. (2011). Monitoring of atmospheric dust deposition by using a magnetic method. WIT Trans Ecol Environ, 147, 363–371. https://doi.org/10.2495/air110341

    Article  Google Scholar 

  • Kapička, A., Petrovský, E., Ustjak, S., & Macháčkovác, K. (1999). Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: A case study in the Czech Republic. J Geoche Explor, 66(1–2), 291–297. https://doi.org/10.1016/S0375-6742(99)00008-4

    Article  Google Scholar 

  • Kapper, K. L., Donadini, F., & Hirt, A. M. (2015). Holocene archeointensities from mid European ceramics, slags, burned sediments and cherts. Phys Earth Planet In, 241, 21–36. https://doi.org/10.1016/j.pepi.2014.12.006

    Article  Google Scholar 

  • Kempter, H., & Frenzel, B. (1999). The local nature of anthropogenic emission sources on the elemental content of nearby ombrotrophic peat bogs, Vulkaneifel, Germany. Sci Total Environ, 241(1–3), 117–128. https://doi.org/10.1016/S0048-9697(99)00331-9

    Article  CAS  Google Scholar 

  • Kempter, H., & Frenzel, B. (2000). The impact of early mining and smelting on the local tropospheric aerosol detected in ombrothropic peat bogs in the Harz, Germany. Water Air Soil Pollut, 121, 93–108. https://doi.org/10.1023/A:1005253716497

    Article  CAS  Google Scholar 

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol, 78, 135–148. https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  • Klose, S., & Makeschin, F. (2004). Chemical properties of forest soils along a fly-ash deposition gradient in Eastern Germany. E J Forest Res, 123(1), 3–12.

    Article  CAS  Google Scholar 

  • Kober, B., Wessels, M., Bollhӧffer, A., & Mangini, A. (1999). Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere. Geochimica Et Cosmochimica Acta, 63–9, 1293–1303. https://doi.org/10.1016/S0016-7037(99)00064-2

    Article  Google Scholar 

  • Lee, J. A., & Tallis, J. H. (1973). Regional and historical aspects of lead pollution in Britain. Nature, 245, 216–218. https://doi.org/10.1038/245216a0

    Article  CAS  Google Scholar 

  • Le Roux, G., Aubert, D., Stille, P., Krachler, M., Kober, B., Cheburkin, A., Bonani, G., & Shotyk, W. (2005). Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives. Atmos Environ, 39, 6790–6801. https://doi.org/10.1016/j.atmosenv.2005.07.026

    Article  CAS  Google Scholar 

  • Liu, Q. T., Diamond, M. E., Gingrich, S. E., Ondov, J. M., Maciejczyk, P., & Sterm, G. A. (2003). Accumulation of metals, trace elements and semivolatile organic compounds on exterior windows surfaces in Baltimore. Environ Pollut, 122, 51–61. https://doi.org/10.1016/S0269-7491(02)00286-5

    Article  CAS  Google Scholar 

  • Livett, E. A., Lee, J. A., & Tallis, J. H. (1979). Lead, zinc and copper analyses of British blanket peats. J Ecol, 67, 865–891. https://doi.org/10.2307/2259219

    Article  CAS  Google Scholar 

  • Loska, K., Cebula, J., Pelczar, J., Wiechuła, D., & Kwapiliński, J. (1997). Use of enrichment and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut, 93, 347–365. https://doi.org/10.1023/A:1022121615949

    Article  CAS  Google Scholar 

  • Magiera, T., Jabłońska, M., Strzyszcz, Z., & Rachwał, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ, 45, 281–290. https://doi.org/10.1016/j.atmosenv.2011.04.076

    Article  CAS  Google Scholar 

  • Magiera, T., Mendakiewicz, M., Szuszkiewicz, M., Jabłońska, M., & Chróst, L. (2016). Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. Sci Total Environ, 566–567, 536–551. https://doi.org/10.1016/j.scitotenv.2016.05.126

    Article  CAS  Google Scholar 

  • Magiera, T., Szuszkiewicz, M. M., Michczyński, A., Chróst, L., & Szuszkiewicz, M. (2021). Peat bogs as archives of local ore mining and smelting activities over the centuries: A case study of Miasteczko Śląskie (Upper Silesia, Poland). Catena, 198, 105063. https://doi.org/10.1016/j.catena.2020.105063

    Article  CAS  Google Scholar 

  • Maher, B. A. (1986). Characterization of soils by mineral magnetic measurements. Phys Earth Planet Inter, 42, 76–92. https://doi.org/10.1016/S0031-9201(86)80010-3

    Article  Google Scholar 

  • Maj, J. (2007). Wiek torfowisk izerskich na podstawie dotychczasowych badań palinologicznych. Przyroda Sudetów 10: 55–62. The age of Izera peat bogs based on palinological research to date. Nature Sudetes, 10, 55–62.

    Google Scholar 

  • Marie, D. C., Chaparro, M. A. E., Lavornia, J. M., Sinito, A. M., Castaneda Miranda, A. G., Gargiulo, J. D., Chaparro, M. A. E., & Böhnel, H. N. (2018). Atmospheric pollution assessed by in situ measurement of magnetic susceptibility on lichens. Ecol Indic, 95, 831–840. https://doi.org/10.1016/j.ecolind.2018.08.029

    Article  CAS  Google Scholar 

  • Martınez-Cortizas, A., Garcıa-Rodeja, E., Pontevedra-Pombal, X., Novoa-Munoz, J. C., Weiss, D., & Cheburkin, A. (2002). Atmospheric Pb deposition in Spain during the last 4600 years recorded by two ombrotrophic peat bogs and implications for the use of peat as archive. Sci Total Environ, 292, 33–44. https://doi.org/10.1016/S0048-9697(02)00031-1

    Article  Google Scholar 

  • Martinez-Cortizas, A., Pontevedra-Pombal, X., Garcia-Rodeja, E., Novoa-Munoz, J. C., Shotyk, W. (1999). Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science, 284(5416), 939–42. https://doi.org/10.1126/science.284.5416.939.

  • Matuła, J., Wojtuń, B., Tomaszewska, K., & Żołnierz, L. (1997). Torfowiska polskiej części Karkonoszy i Gór Izerskich (Peat bogs in the Polish part of the Karkonosze and Izera Mountains). Annales Silesiae, 27, 123–140. in Polish.

    Google Scholar 

  • Mazur, S., & Aleksandrowski, P. (2001). The Tepla(?)/Saxothuringian suture in the Karkonosze-Izera massif, western Sudetes, central European Variscides. Int J Earth Sci, 90, 341–360. https://doi.org/10.1007/s005310000146

    Article  Google Scholar 

  • Merrington, G., & Alloway, B. J. (1994). The transfer and fate of Cd, Cu and Zn from two historic metaliferous mine site in the UK. J Appl Geochem, 9, 677–687. https://doi.org/10.1016/0883-2927(94)90027-2

    Article  CAS  Google Scholar 

  • Mighall, T. M., Abrahams, P. W., Grattan, J. P., Hayes, D., Timberlake, S., & Forsyth, S. (2002). Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK. Sci Total Environ, 292, 69–80. https://doi.org/10.1016/S0048-9697(02)00027-X

    Article  CAS  Google Scholar 

  • Mighall, T. M., Foster, I. D. L., Crew, P., Chapman, A. S., & Finn, A. (2009). Using mineral magnetism to characterize ironworking and to detect its evidence in peat bogs. J Archaeol Sci, 36, 130–139. https://doi.org/10.1016/j.jas.2008.07.015

    Article  Google Scholar 

  • Mighall, T. M., Martinez-Cortizas, M. A., Sanchez, S. N., Foster, I. D. L., Singh, S., Bateman, M., & Picking, J. (2014). Identifying evidence for past mining and metallurgy from a record of metal contamination preserved in an ombrotrophic mire near Leadhills, SW Scotland, UK. Holocene, 24, 1719–1730. https://doi.org/10.1177/0959683614551228

    Article  Google Scholar 

  • Monna, F., Clauer, N., Toulkeridis, T., & Lancelot, J. R. (2000). Influence of anthropogenic activity on the lead isotope signature of Thau Lake sediments (southern France): Origin and temporal evolution. J Appl Geochem, 15(9), 1291–1305. https://doi.org/10.1016/S0883-2927(99)00117-1

    Article  CAS  Google Scholar 

  • Novák, M., Emmanuel, S., Vile, M. A., Erel, Y., Veron, A., & Paces, T. (2003). Origin of lead in eight Central European peat bogs determined from isotope ratios, strengths and operation times of regional pollution sources. Sci Total Environ, 37, 437–445. https://doi.org/10.1021/es0200387

    Article  CAS  Google Scholar 

  • Novák, M., & Pacherova, P. (2008). Mobility of trace metals in pore waters of two Central European peat bogs. Sci Total Environ, 394, 331–337. https://doi.org/10.1016/j.scitotenv.2008.01.036.

  • Nriagu, J., Jinabhai, C., Naidoo, R., & Coutsoudis, A. (1996). Atmospheric lead pollution in KwaZulu/Natal, South Africa. Sci Total Environ, 191,69–76. https://doi.org/10.1016/0048-9697(96)05249-7.

  • Oberc-Dziedzic, T., Pin, C., & Kryza, R. (2005). Early Palaeozoic crustal melting in an extensional setting: Petrological and Sm–Nd evidence from the Izera granite-gneisses, Polish Sudetes. Int J Earth Sci, 94, 354–368. https://doi.org/10.1007/s00531-005-0507-y

    Article  CAS  Google Scholar 

  • Oldfield, F., Gedye, S. A., Hunt, A., Jones, J. M., Jones, M. D. H., & Richardson, N. (2015). The magnetic record of inorganic fly ash deposition in lake sediments and ombrotrophic peats. The Holocene, 25, 215–225. https://doi.org/10.1177/0959683614556379

    Article  Google Scholar 

  • Oldfield, F., Thompson, R., Barber, K. E. (1978). Changing atmospheric fall-out of magnetic particles recorded in recent ombrotrophic peat sections. Science, 199, 679–680, https://doi.org/10.1126/science.199.4329.679-a

  • Oldfield, F., Tolonen, K., & Thompson, R. (1981). History of particulate atmospheric pollution from magnetic measurements in dated Finish peat profiles. Ambio, 10, 185–188.

    CAS  Google Scholar 

  • Pacyna, J. M., & Winchester, J. W. (1990). Contamination of the global environment as observed in the Arctic. Palaeogeogr Palaeoclimatol Palaeoecol, 82, 149–157. https://doi.org/10.1016/S0031-0182(12)80028-9

    Article  Google Scholar 

  • Pawlyta, J., Pazdur, A., Rakowski, A.R., 1998. Measurements of C-14 and H-3 at natural abundance level using liquid scintillation beta spectrometry Rudarsko-Metalurski Zbiornik 45: 253–254.

  • Petrovský, E., & Ellwood, B. B. (1999). Magnetic monitoring of air-, land- and water pollution. In B. A. Maher & R. Thompson (Eds.), Quaternary Climates (pp. 279–322). Environments and Magnetism, Cambridge University Press.

    Google Scholar 

  • Petrovský, E., Kapička, A., Zapletal, K., Šebestová, E., Spanilá, T., Dekkers, M. J., & Rochette, P. (1998). Correlation between magnetic parameters and chemical composition of lake sediments from Northern Bohemia-Preliminary study. Phys Chem Earth, 23, 1123–1126. https://doi.org/10.1016/S0079-1946(98)00139-6

    Article  Google Scholar 

  • Pontevedra-Pombal, X., Mighall, T. M., Nóvoa-Muñoz, J. C., Eva, C., Peiteado-Varela, E. C., Rodríguez-Racedo, J., García-Rodeja, E., & Martínez-Cortizas, A. (2013). Five thousand years of atmospheric Ni, Zn, As, and Cd deposition recorded in bogs from NW Iberia: Prehistoric and historic anthropogenic contributions. J Archaeol Sci, 40, 764–777. https://doi.org/10.1016/j.jas.2012.07.010

    Article  CAS  Google Scholar 

  • Pratte, S., Mucci, A., & Garneau, M. (2013). Historical records of atmospheric metal deposition along the St. Lawrence Valley (western Canada) based on peat bog cores. Atmos Environ, 79, 831–840. https://doi.org/10.1016/j.atmosenv.2013.07.063

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol, 34, 5084–5091. https://doi.org/10.1021/es001339o

  • Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B., Manning, S., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62, 725–757. https://doi.org/10.1017/RDC.2020.41

    Article  CAS  Google Scholar 

  • Richardson, N. (1986). The mineral magnetic record in recent ombrotrophic peat synchronised by fine resolution pollen analysis. Phys Earth Planet Inter, 42, 48–56. https://doi.org/10.1016/S0031-9201(86)80007-3

    Article  Google Scholar 

  • Salo, H., & Mäkinen, J. (2019). Comparison of traditional moss bags and synthetic fabric bags in magnetic monitoring of urban air pollution. Ecol Indic, 104, 559–566. https://doi.org/10.1016/j.ecolind.2019.05.033

    Article  CAS  Google Scholar 

  • Schmuck, A. (1969). Klimat Sudetów (Climate of the Sudetes). Problemy zagospodarowania ziem górskich (Problems in mountain land management), 5(18), 93–154; in Polish.

  • Shotyk, W. (1988). Review of the inorganic geochemistry of peats and peatland waters. Earth Science Rev, 25, 95–176.

  • Shotyk, W. (1996). Peat bogs archives of atmospheric metal deposition: Geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environ Rev, 4, 149–183. https://doi.org/10.1139/a96-010

    Article  CAS  Google Scholar 

  • Shotyk, W. (1996). Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic versus minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water Air Soil Pollut, 90, 375–405. https://doi.org/10.1007/BF00282657

    Article  CAS  Google Scholar 

  • Shotyk, W. (2002). The chronology of anthropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposition from Switzerland. Sci Total Environ, 292, 19–31. https://doi.org/10.1016/S0048-9697(02)00030-X

    Article  CAS  Google Scholar 

  • Shotyk, W., Blaser, P., Grunig, A., & Cheburkin, A. K. (2000). A new approach for quantifying cumulative anthropogenic, atmospheric lead deposition using peat cores from bogs: Pb in eight Swiss peat bogs profiles. Sci Total Environ, 249, 281–295. https://doi.org/10.1016/S0048-9697(99)00523-9

    Article  CAS  Google Scholar 

  • Shotyk, W., Krachler, M., Martinez-Cortizas, A., Cherbukin, A. K., & Emons, H. (2002). A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12 370 14C yr BP, and their variation with Holocene climate change. Earth Planet Sci Lett, 199, 21–37. https://doi.org/10.1016/S0012-821X(02)00553-8

    Article  CAS  Google Scholar 

  • Shotyk, W., Peter, G., Appleby, P. G., Bicalho, B., Davies, L., Froese, D., Grant-Weaver, I., Krachler, M., Magnan, G., Mullan-Boudreau, G., Noernberg, T., Pelletier, R., Shannon, B., van Bellen, S., & Zaccone, C. (2016). Peat bogs in northern Alberta, Canada reveal decades of declining atmospheric Pb contamination. Geophys Res, 43, 9964–9974. https://doi.org/10.1002/2016GL070952

    Article  CAS  Google Scholar 

  • Shotyk, W., Weiss, D., Appleby, P. G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J. D., Reese, S., & Van der Knaap, W. O. (1998). History of atmospheric lead deposition since 12 370 14 Cyr BP recorded in a peat bog profile, Jura Mountains, Switzerland. Science, 281, 1635–1640. https://doi.org/10.1126/science.281.5383.1635

    Article  CAS  Google Scholar 

  • Shotyk, W., Weiss, D., Kramers, J. D., Frei, R., Cheburkin, A. K., Gloor, M., & Reese, S. (2001). Geochemistry of the peat bog at Etang de la Gruere, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 C-14 yr BP. Geochimica Et Cosmochimica Acta, 65, 2337–2360. https://doi.org/10.1016/S0016-7037(01)00586-5

    Article  CAS  Google Scholar 

  • Sikorski, J. (2019). A new method for constructing Pb-210 chronology of young peat profiles sampled with low frequency. Geochronometria, 46, 1–14. https://doi.org/10.1515/geochr-2015-0101

    Article  CAS  Google Scholar 

  • Sikorski, J., & Bluszcz, A. (2008). Application of α and γ spectrometry in the 210Pb method to model sedimentation in artificial retention reservoir. Geochronometria, 31, 65–75. https://doi.org/10.2478/v10003-008-0019-4

    Article  Google Scholar 

  • Skripin, V. V., & Kovaliukh, N. N. (1998). Recent developments in the procedures used at the sscer laboratory for the routine preparation of lithium carbide. Radiocarbon, 40(1), 211–214. https://doi.org/10.1017/S0033822200018063

    Article  Google Scholar 

  • Sobik, M., 1998. Specyficzne cechy klimatu Gór Izerskich (Specific climate characteristics of the Izera Mountains), w: Problemy klimatyczno-botaniczne Gór Izerskich (in: Climate and botanical problems of the Izera Mountains). Informator konferencyjny (Conference guide) nr 29. Świeradów Zdrój, 21–23.09.1998; in Polish.

  • Spiteri, C., Kalinski, V., Rösler, W., Hoffmann, V., & Appel, E. (2005). Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ Geol, 49, 1–9. https://doi.org/10.1007/s00254-005-1271-9

    Article  CAS  Google Scholar 

  • Steinnes, E., & Friedland, A. J. (2006). Metal contamination of natural surface soils from long-range atmospheric transport: Existing and missing knowledge. Environ Rev, 14(3), 169–186. https://doi.org/10.1139/a06-002

    Article  CAS  Google Scholar 

  • Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio, 36, 614–621. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2

    Article  CAS  Google Scholar 

  • Stewart, C., & Fergusson, J. E. (1994). The use of peat in the historical monitoring of trace metals in the atmosphere. Environ Pollut, 86, 243–249. https://doi.org/10.1016/0269-7491(94)90164-3

    Article  CAS  Google Scholar 

  • Strzyszcz, Z., Chróst, L., 1995. Określenie depozycji niektórych metali ciężkich na przykładzie torfowiska wysokiego na Hali Izerskiej (Determination of the deposition of some heavy metals on the example of the raised bog at Hala Izerska). Problemy ekologiczne wysokogórskiej części Karkonoszy (Ecological problems in the high-mountain part of the Karkonosze). Oficyna Wydawnicza Instytutu Ekologii PAN (Publishing House of the Institute of Ecology of the PAS), 123–129; in Polish.

  • Strzyszcz, Z., & Magiera, T. (1998). Magnetic record of industrial pollution in forest soils of Upper Silesia Poland. Phys Chem Earth, 9–10, 1127–1131.

    Article  Google Scholar 

  • Strzyszcz, Z., & Magiera, T. (2001). Record of industrial pollution in Polish ombrotrophic peat bogs. Phys Chem Earth, 26(11–12), 859–866. https://doi.org/10.1016/S1464-1895(01)00133-8

    Article  Google Scholar 

  • Szuszkiewicz, M., Magiera, T., Kapička, A., Petrovský, E., Grison, H., & Gołuchowska, B. (2015). Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland. J Appl Geophys, 116, 84–92. https://doi.org/10.1016/j.jappgeo.2015.02.027

    Article  Google Scholar 

  • Szuszkiewicz, M. M., Łukasik, A., Magiera, T., & Szuszkiewicz, M. (2018). Technogenic magnetic particles of topsoil from different sources of emission – A case study from upper silesian conurbation, Poland. MATEC Web Conf, 247, 00051. https://doi.org/10.1051/matecconf/201824700051

    Article  CAS  Google Scholar 

  • Theodorsson, P. (2005). Simultaneously measuring l4C and radon in benzene dating samples. Radiocarbon, 47(2), 231–234.

    Article  CAS  Google Scholar 

  • Thompson, R., & Oldfield, F. (1986). Environmental magnetism. Allen and Unwin. https://doi.org/10.1007/978-94-011-8036-8

    Article  Google Scholar 

  • Tichy, H. (1928). Die alte Glasshütte Karlsthal. Wanderer im Riesengebirge 9, 127–141; in German.

  • Tołpa, S. (1949). Torfowiska Karkonoszy i Gór Izerskich (Peat bogs of the Karkonosze and Izera Mountains). Roczniki Nauk Rolniczych (Annals of Agricultural Sciences), 52, 5–73. in Polish.

    Google Scholar 

  • Tudyka, K., Bluszcz, A., Kozłowska, B., Pawlyta, J., & Michczyński, A. (2015). Low level 14C measurements in freshly prepared benzene samples with simultaneous 214Bi/214Po pairs counting for routine 222Rn contamination correction. Radiat Meas, 74, 6–11. https://doi.org/10.1016/j.radmeas.2015.01.010

    Article  CAS  Google Scholar 

  • Van Geel, B. (1978). A palaeoecological study of holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palyno, 25, 1–120. https://doi.org/10.1016/0034-6667(78)90040-4

    Article  Google Scholar 

  • Weiss, D., Shotyk, W., Kramers, J. D., & Gloor, M. (1999). Sphagnum mosses as archives of recent and past atmospheric lead deposition in Switzerland. Atmos Environ, 33, 3751–3763. https://doi.org/10.1016/S1352-2310(99)00093-X

    Article  CAS  Google Scholar 

  • Williams, M. (1992). Evidence for the dissolution of magnetite in recent Scottish peats. Quat Res, 37, 171–182. https://doi.org/10.1016/0033-5894(92)90080-3

    Article  CAS  Google Scholar 

  • Winkler, A., Caricchi, C., Guidotti, M., Owczarek, M., Macrì, P., Nazzari, M., Amoroso, A., Di Giosa, A., & Listrani, S. (2019). Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy. Sci Total Environ, 690, 1355–1368. https://doi.org/10.1016/j.scitotenv.2019.06.526

    Article  CAS  Google Scholar 

  • Wojtuń, B., Matuła, J., Żołnierz, L., Raj, A. przy współudziale K. Tomaszewskiej i A. Pałuckiego (2000). Rezerwat Torfowiska Doliny Izery (The Izera Valley Peat Bog Reserve). Fundacja Karkonoska w Jeleniej Górze (Karkonoska Foundation in Jelenia Góra). Wrocław-Jelenia Góra; in Polish.

  • Zawadzki, J., Szuszkiewicz, M., Fabiańczyk, P., & Magiera, T. (2016). Geostatistical discrimination between different sources of soil pollutants using a magneto-geochemical data set. Chemosphere, 164, 668–676. https://doi.org/10.1016/j.chemosphere.2016.08.145

    Article  CAS  Google Scholar 

  • Zuna, M., Ettler, V., Šebek, O., & Mihaljevič, M. (2012). Mercury accumulation in peatbogs at Czech sites with contrasting pollution histories. Sci Total Environ, 424, 322–330. https://doi.org/10.1016/j.scitotenv.2012.02.049

    Article  CAS  Google Scholar 

  • Zuna, M., Mihaljevič, M., Šebek, O., Ettler, V., Handley, M., Navrátil, T., & Goliáš, V. (2011). Recent lead deposition trends in the Czech Republic as recorded by peat bogs and tree rings. Atmos Environ, 45, 4950–4958. https://doi.org/10.1016/j.atmosenv.2011.06.007

    Article  CAS  Google Scholar 

  • Żaba, J. (1982). Proposed classification and nomenclature of the gneisses and granites of Izera Block (Western Sudetes). Geol Sudet, 17(1–2), 141–154 (in Polish with English summary).

  • Żołnierz, L., Wojtuń, B., Przewoźnik, L., 2012. Ekosystemy nieleśne Karkonoskiego Parku Narodowego (Non-forest ecosystems of the Karkonosze National Park). Karkonoski Park Narodowy, Jelenia Góra.

Download references

Acknowledgements

This work was partially supported by the National Science Centre (Poland), grant number 2016/21/N/ST10/02467. We thank Prof. Tadeusz Magiera (from the Institute of Environmental Engineering, Polish Academy of Sciences) for the inspiration to undertake the research. We are also grateful to the professional proofreaders at Proof-Reading-Services.com for their language corrections.

Funding

Narodowe Centrum Nauki, 2016/21/N/ST10/02467, Maria Magdalena Szuszkiewicz

Author information

Authors and Affiliations

Authors

Contributions

Adam Michczyński: conceptualization, methodology, software, formal analysis, writing—original draft, writing—review and editing, visualization, and funding acquisition. Maria Magdalena Szuszkiewicz: conceptualization, methodology, validation, investigation, writing—original draft, writing—review and editing, visualization, supervision, and funding acquisition. Beata Gołuchowska: conceptualization, methodology, investigation, writing—original draft, and writing—review and editing. Jarosław Sikorski: methodology, software, formal analysis, writing—original draft, writing—review and editing, and visualization.

Corresponding author

Correspondence to Maria Magdalena Szuszkiewicz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michczyński, A., Szuszkiewicz, M.M., Gołuchowska, B. et al. Historical Record of Magnetic and Geochemical Signals in Mountain Peat Bogs: A Case Study of the Black Triangle Region (the Izery Mountains, SW Poland). Water Air Soil Pollut 233, 127 (2022). https://doi.org/10.1007/s11270-022-05593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05593-x

Keywords

Navigation