Skip to main content
Log in

Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metal contamination from landfills has become a worldwide problem. Concerns have been raised over their impacts on human health and the environment. Soil amendment-assisted phytoremediation is rapidly gaining attention as a biotechnology to accelerate heavy metal (HM) removal from contaminated soils or immobilize the HMs. How different amendments influence this process is still an important research question. This study quantified the bioaccumulation factor (BAF) and removal efficiency (RE) of HMs by wheat (Triticum aestivum), bean (Vicia faba), and rocca (Eruca sativa) in a pot experiment with biochar (BC), humic substances (HS) (in the form of potassium humate), and iron oxide (FO) amendments to clarify the effect of these treatments on phytoremediation. Each amendment was applied to the soil at a rate of 20 g kg−1 soil, with unamended soil as a control. The results indicated that the available HMs were significantly decreased in the amended soils (p < 0.05) as compared with untreated soil. Plant concentrations of all the studied metals decreased with the soil amendments as compared to untreated soils. BAF was higher than 1 in all plants, and RE indicated the plants were most efficient in removing Pb from the studied soils. In general, soil amendments aided soil HM immobilization and reduced the accumulation of HMs in the cultivated plants. The studied amendments could be further explored as tools to remediate contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adelopo, A. O., Haris, P. I., Alo, B. I., Huddersman, K., & Jenkins, R. O. (2018). Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors. Waste Management, 78, 227–237. https://doi.org/10.1016/j.wasman.2018.05.040.

    Article  CAS  Google Scholar 

  • Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306.

    Article  CAS  Google Scholar 

  • Ahmad, M., Hashimoto, Y., Moon, D. H., Lee, S. S., & Ok, Y. S. (2012). Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. Journal of Hazardous Materials, 209–210, 392–401.

    Article  Google Scholar 

  • Aitta, A., El-Ramady, H., Alshaal, T., El-Henawy, A., Shams, M., Talha, N., Elbehiry, F., & Brevik, E. C. (2019). Seasonal and spatial distribution of soil trace elements around Kitchener drain in the northern Nile Delta, Egypt. Agriculture, 9, 152. https://doi.org/10.3390/agriculture9070152.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91, 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

    Article  CAS  Google Scholar 

  • Alvarez-Mateos, P., Ales-Alvarez, F., & Garcia-Martin, J. F. (2019). Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. Journal of Environmental Management, 231, 886–895. https://doi.org/10.1016/j.jenvman.2018.10.052.

    Article  CAS  Google Scholar 

  • Anning, A. K., & Akoto, R. (2018). Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 148, 97–104. https://doi.org/10.1016/j.ecoenv.2017.10.014.

    Article  CAS  Google Scholar 

  • Anning, A. K., Korsah, P. E., & Addo-Fordjour, P. (2013). Phytoremediation of wastewater with limnocharis flava, thalia geniculata and typha latifolia in constructed wetlands. International Journal of Phytoremediation, 15, 452–464. https://doi.org/10.1080/15226514.2012.716098.

    Article  CAS  Google Scholar 

  • Arenas-Lago, D., Andrade, M. L., Lago-Vila, M., Rodriguez-Seijo, A., & Vega, F. A. (2014). Sequential extraction of heavy metals in soils from copper mine: distribution in geochemical fractions. Geoderma, 230-231, 108–118.

    Article  CAS  Google Scholar 

  • Babu, T., & Nagabovanalli, P. (2017). Effect of silicon amendment on soil-cadmium availability and uptake in rice grown in different moisture regimes. Journal of Plant Nutrition, 40(17), 2440–2457. https://doi.org/10.1080/01904167.2017.1346683.

    Article  CAS  Google Scholar 

  • Bai, J., Xiao, R., Cui, B., Zhang, K., Wang, Q., Liu, X., Gao, H. F., & Huang, L. B. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River estuary, South China. Environmental Pollution, 159, 817–824.

    Article  CAS  Google Scholar 

  • Bednářová, Z., Kalina, J., Hájek, O., Sáňka, M., Komprdová, K. (2016). Spatial distribution and risk assessment of metals in agricultural soils. Geoderma, 284, 113–121. https://doi.org/10.1016/j.geoderma.2016.08.021.

  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105(30), 103–120. https://doi.org/10.1016/j.jenvman.2012.04.002.

    Article  CAS  Google Scholar 

  • Bilardi, S., Calabrò, P. S., Greco, R., & Moraci, N. (2018). Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon. Environmental Technology, 41(4), 498–510. https://doi.org/10.1080/09593330.2018.1503725.

    Article  CAS  Google Scholar 

  • Black, C. A. (1965). Methods of soil analysis. Madison: Amer. Soc. Agron. Inc.

    Book  Google Scholar 

  • Brevik, E. C. (2009). Soil, food security, and human health. In: W. Verheye (Ed.). Soils, Plant Growth and Crop Production. Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford, UK. http://www.eolss.net. Accessed 16 February 2020.

  • Brevik, E. C., & Burgess, L. C. (2015). Soil: influence on human health. Encyclopedia of Environmental Management. https://doi.org/10.1081/E-EEM-120051138.

  • Brumelis, G., Lapina, L., Nikodemus, O., & Tabors, G. (2002). Use of the O horizon of Forest soils in monitoring metal deposition in Latvia. Water, Air, and Soil Pollution, 135, 291–309.

    Article  CAS  Google Scholar 

  • Burlakovs, J., Klavins, M., Osinska, L., & Purmalis, O. (2013). The impact of humic substances as remediation agents to the speciation forms of metals in soil. APCBEE Procedia, 5, 192–196. https://doi.org/10.1016/j.apcbee.2013.05.034.

    Article  CAS  Google Scholar 

  • Cai, L., Zhencheng, X., Ren, M., Guo, Q., Hu, X., Hu, G., Wan, H., & Peng, P. (2012). Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicology and Environmental Safety, 78, 2–8.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., & Kettler, T. A. (2001). Estimation of particulate and total organic matter by weight losson-ignition. In R. Lal et al. (Eds.), Assessment methods for soil carbon (pp. 349–359). New York: Lewis Publishers.

    Google Scholar 

  • Chakraborty, S., Weindorf, D. C., Deb, S., Li, B., Paul, S., Choudhury, A., & Ray, D. P. (2017). Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma, 289, 72–81. https://doi.org/10.1016/j.geoderma.2016.11.024.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Broadhurst, C. L., & Centofanti, T. (2010). Phytoremediation of soil trace elements. In P. S. Hooda (Ed.), Trace elements in soils (pp. 311–352). Hoboken: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Chavez, E., He, Z. L., Stoffella, P. F., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214.

    Article  CAS  Google Scholar 

  • Czarnecki, S., & Düring, R. A. (2015). Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. SOIL, 1, 23–33.

    Article  CAS  Google Scholar 

  • Da Fonseca, E. M., Neto, J. A. B., Mcalister, J., Smith, B., Fernandez, M. A., & Balieiro, F. C. (2013). The role of the humic substances in the fractioning of heavy metals in Rodrigo de Freitas lagoon, Rio de Janeiro – Brazil. Annals of the Brazilian Academy of Sciences, 85(4), 1289–1301. https://doi.org/10.1590/0001-3765201371011.

    Article  CAS  Google Scholar 

  • Damian, G. E., Micle, V., & Sur, I. M. (2019). Mobilization of Cu and Pb from multi-metal contaminated soils by dissolved humic substances extracted from leonardite and factors affecting the process. Journal of Soils and Sediments, 19, 2869–2881. https://doi.org/10.1007/s11368-019-02291-w.

    Article  CAS  Google Scholar 

  • Delgado, J., Barba-Brioso, C., Nieto, J. M., & Boski, T. (2011). Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Science of the Total Environment, 409, 3666–3679.

    Article  CAS  Google Scholar 

  • Doelsch, E., Moussard, G., & Saint-Macary, H. (2008). Fractionation of tropical soilborne heavy metals - comparison of two sequential extraction procedures. Geoderma, 143(1–2), 168–179. https://doi.org/10.1016/j.geoderma.2007.10.027.

    Article  CAS  Google Scholar 

  • Ehsan, S., Prasher, S. O., & Marshall, W. D. (2006). A washing procedure to mobilize mixed contaminants from soil. II. Heavy metals. Journal of Environmental Quality, 35, 2084–2091.

    Article  CAS  Google Scholar 

  • Elbehiry, F., Elbasiouny, H., El-Ramady, H., & Brevik, E. C. (2019). Mobility, distribution, and potential risk assessment of selected trace elements in soils of the Nile Delta, Egypt. Environmental Monitoring & Assessment, 191, 713. https://doi.org/10.1007/s10661-019-7892-3.

    Article  CAS  Google Scholar 

  • Forján, R., Asensio, V., Rodríguez-Vila, A., & Covelo, E. F. (2016). Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena, 137, 120–125. https://doi.org/10.1016/j.catena.2015.09.010.

    Article  CAS  Google Scholar 

  • Gan, Y., Wang, Y., Duan, Y., Deng, Y., Guo, X., & Ding, X. (2014). Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan plain, Central China. Journal of Geochemical Exploration, 138, 81–93.

    Article  CAS  Google Scholar 

  • Hanesch, M., Scholger, R., & Dekkers, M. J. (2001). The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Physics and Chemistry of the Earth Part A, 26, 885–891.

    Article  Google Scholar 

  • He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846–855. https://doi.org/10.1016/j.envpol.2019.05.151.

    Article  CAS  Google Scholar 

  • Hölzle, I. (2018). Dry screening - assessing the effectiveness of contaminant reduction in recovered landfill soils. Journal of Cleaner Production, 172, 1998–2008. https://doi.org/10.1016/j.jclepro.2017.11.225.

    Article  CAS  Google Scholar 

  • Hseu, Z., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma, 327(1), 97–106. https://doi.org/10.1016/j.geoderma.2018.04.030.

    Article  CAS  Google Scholar 

  • Jalali, M., & Hemati, N. (2013). Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy Water Environment, 11, 299–309. https://doi.org/10.1007/s10333-012-0320-8.

    Article  Google Scholar 

  • Jayanthi, B., Emenike, C. U., Agamuthu, P., Simarani, K., Mohamad, S., & Fauziah, S. H. (2016). Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. Catena, 147, 25–31. https://doi.org/10.1016/j.catena.2016.06.033.

    Article  CAS  Google Scholar 

  • Jones, J. B., Wolf, J. B., & Mills, H. A. (1991). Plant analysis handbook: a practical sampling, preparation, analysis, and interpretation guide. Athens: Micro–macro Publishing.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kang, K., Shin, H. S., & Park, K. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36, 4023–4032.

    Article  CAS  Google Scholar 

  • Kanungo, S. P., Mukherjee, P. S., & Rout, S. K. (2000). Utilization of industrial wastes-fly ash and coir pith for cultivation of commercial aromatic crops. In G. V. Rao, B. Das, S. R. S. Sastri, & H. S. Ray (Eds.), Mineral processing waste and environment management (pp. 183–186). New Delhi: Allied Publishers Ltd..

    Google Scholar 

  • Kargar, M., Clark, O. G., Hendershot, W. H., Jutras, P., & Prasher, S. O. (2015). Immobilization of trace metals in contaminated urban soils amended with compost and biochar. Water, Air, and Soil Pollution, 226, 191. https://doi.org/10.1007/s11270-015-2450-2.

    Article  CAS  Google Scholar 

  • Khaledian, Y., Pereira, P., Brevik, E. C., Pundyte, N., & Paliulis, D. (2017). The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degradation and Development, 28, 345–354.

    Article  Google Scholar 

  • Khanlari, Z. V., & Jalali, M. (2008). Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu, and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran. Archives of Agronomy and Soil Science, 54, 19–32. https://doi.org/10.1080/03650340701697317.

    Article  CAS  Google Scholar 

  • Krčmar, D., Tenodi, S., Grba, N., Kerkez, D., Watson, M., Rončević, S., & Dalmacija, B. (2018). Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia. Science of the Total Environment, 615, 1341–1354. https://doi.org/10.1016/j.scitotenv.2017.09.283.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of as, Cr, cu, Pb and Zn in soil using amendments—a review. Waste Management, 28(1), 215–225.

    Article  CAS  Google Scholar 

  • Lan, Z. M., Chen, C. R., Rashti, M. R., Yang, H., & Zhang, D. K. (2017). Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils. Science of the Total Environment, 576, 559–571.

    Article  CAS  Google Scholar 

  • Lee, S. S., Lim, J. E., Abd El-Azeem, S. A. M., Choi, B., Oh, S. E., Moon, D. H., & Ok, Y. S. (2013). Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research, 20, 1719–1726.

    Article  CAS  Google Scholar 

  • Li, X., Yang, Z., Zhang, C., Wei, J., Zhang, H., Li, Z., Ma, C., Wang, M., Chen, J., & Hu, J. (2019). Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2019.05.015.

  • Licina, V., Antic-Mladenovic, S., Kresovic, M., & Rinklebe, J. (2010). Effect of high nickel and chromium background levels in serpentine soil on their accumulation in organs of a perennial plant. Communications in Soil Science and Plant Analysis, 41, 1–15.

    Article  Google Scholar 

  • Lu, M., & Zhang, Z. Z. (2014). Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant and Soil, 382, 89. https://doi.org/10.1007/s11104-014-2147-0.

    Article  CAS  Google Scholar 

  • Massa, N., Andreucci, F., Poli, M., Aceto, M., Barbato, R., & Berta, G. (2010). Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicology and Environmental Safety, 73, 1988–1997.

    Article  CAS  Google Scholar 

  • Mico, C., Recatala, L., Peris, M., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 6(5), 863–872.

    Article  Google Scholar 

  • Mohamed, I., Zhang, G., Li, Z., Liu, Y., Chen, F., & Daid, K. (2015). Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84, 67–76.

    Article  Google Scholar 

  • Nagendran, R., Selvam, A., Joseph, K., & Chiemchaisri, C. (2006). Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: a brief review. Waste Management, 26, 1357–1369. https://doi.org/10.1016/j.wasman.2006.05.003.

    Article  CAS  Google Scholar 

  • Naresh Kumar, R., & Nagendran, R. (2009). Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. Journal of Hazardous Materials, 169, 1119–1126.

    Article  CAS  Google Scholar 

  • Ogunbanjo, O., Onawumi, O., Gbadamosi, M., Ogunlana, A., & Anselm, O. (2016). Chemical ospeciation of some heavy metals and human health risk assessment in soil around two municipal dumpsites in Sagamu, Ogun state, Nigeria. Chemical Speciation & Bioavailability, 28, 142–151. https://doi.org/10.1080/09542299.2016.1203267.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Lee, S. S., Jeon, W. T., Oh, S. E., Usman, A. R. A., & Moon, D. H. (2011). Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, 33, 31–39.

    Article  CAS  Google Scholar 

  • Overesch, M., Rinklebe, J., Broll, G., & Neue, H. (2007). Metals and arsenic in soils and corresponding vegetation at central Elbe River floodplains (Germany). Environmental Pollution, 145, 800–812.

    Article  CAS  Google Scholar 

  • Palleiro, L., Patinha, C., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2016). Metal fractionation in top soils and bed sediments in the Mero River rural basin: Bioavailability and relationship with soil and sediment properties. Catena, 144, 34–44. https://doi.org/10.1016/j.catena.2016.04.019.

    Article  CAS  Google Scholar 

  • Piccolo, A., Spaccini, R., De Martino, A., Scognamiglio, F., & di Meo, V. (2019). Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition. Chemosphere, 225, 150–156. https://doi.org/10.1016/j.chemosphere.2019.03.019.

  • Prasad, M. N. V., Nakbanpote, W., Sebastian, A., Panitlertumpai, N., & Phadermrod, C. (2015). Phytomanagement of padaeng zinc mine waste, Mae Sot District, Tak Province, Thailand. In K. Hakeem, M. Sabir, M. Ozturk, & A. Mermut (Eds.), Soil remediation and plants: prospects and challenges (pp. 661–687). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93. https://doi.org/10.1016/j.jenvman.2015.05.036.

    Article  CAS  Google Scholar 

  • Radziemska, M. (2018). Study of applying naturally occurring mineral sorbents of Poland (dolomite halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena, 163, 123–129. https://doi.org/10.1016/j.catena.2017.12.015.

    Article  CAS  Google Scholar 

  • Saha, P., Shinde, O., & Sarkar, S. (2017). Phytoremediation of industrial mines wastewater using water hyacinth. International Journal of Phytoremediation, 19(1), 87–96. https://doi.org/10.1080/15226514.2016.1216078.

    Article  CAS  Google Scholar 

  • Shrivastava, S. K., & Banerjee, D. K. (2004). Speciation of metals in sewage sludge and sludge-amended soils. Water, Air and Soil Pollution, 152, 219–232.

    Article  CAS  Google Scholar 

  • Söderberg, T. U., Kleja, D. B., Åström, M., Jarsjö, J., Fröberg, M., Svensson, A., & Augustsson, A. (2019). Metal solubility and transport at a contaminated landfill site – from the source zone into the ground water. Science of the Total Environment, 668, 1064–1076. https://doi.org/10.1016/j.scitotenv.2019.03.013.

    Article  CAS  Google Scholar 

  • Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils. Communications in Soil Science and Plant Analysis, 8, 195–207.

  • Sparks, D. L., Page, A. L., Helmke P. A., Loppert R. H., Soltanpour P. N., Tabatabai M. A., Johnston C. T., Summner M. E. (1996). Methods of soil analysis: chemical methods, Part 3. Madison, WI: Agronomy Society of America and Soil Science Society of America.

  • Srithongkul, C., Wongsaipun, S., Krongchai, C., Santasup, C., & Kittiwachana, S. (2019). Investigation of mobility and bioavailability of arsenic in agricultural soil after treatment by various soil amendments using sequential extraction procedure and multivariate analysis. Catena, 181, 104084. https://doi.org/10.1016/j.catena.2019.104084.

    Article  CAS  Google Scholar 

  • Tan, K. H. (2005). Soil Sampling, preparation, and analysis. Boca Raton: Taylor and Francis Group, CRC Press

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1996). Acid digestion of sediments, sludges and soils. Methods 3050B.

  • Usman, A. R. A., Kuzyakov, Y., & Stahr, K. (2004). Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water, Air, and Soil Pollution, 158, 401–418.

    Article  CAS  Google Scholar 

  • Xing, J., Li, L., Li, G., & Xua, G. (2019). Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures. Ecotoxicology and Environmental Safety, 180, 457–465.

    Article  CAS  Google Scholar 

  • Ye, J., Chen, X., Chen, C., & Bate, B. (2019). Emerging sustainable technologies for remediation of soils and groundwater in a municipal solid waste landfill site – a review. Chemosphere, 227, 681–702. https://doi.org/10.1016/j.chemosphere.2019.04.053.

    Article  CAS  Google Scholar 

  • Yin, H., Tan, N., Liu, C., Wang, J., Liang, X., Qu, M., Feng, X., Qiu, G., Tan, W., & Liu, F. (2016). The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere, 161, 181–189. https://doi.org/10.1016/j.chemosphere.2016.07.018.

    Article  CAS  Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geoaccumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of Rawal Lake, Pakistan. Science of the Total Environment, 470-471, 925–933.

    Article  CAS  Google Scholar 

  • Zhang, P., Qinc, C., Hong, X., Kang, G., Qin, M., Yang, D., Pang, B., Li, Y., He, J., & Dick, R. P. (2018). Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Science of the Total Environment, 633, 1136–1147. https://doi.org/10.1016/j.scitotenv.2018.03.228.

    Article  CAS  Google Scholar 

  • Zhang, S., Wen, J., Hu, Y., Fang, Y., Zhang, H., Xing, L., Wang, Y., & Zeng, G. (2019). Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. Journal of Hazardous Materials, 366, 210–218. https://doi.org/10.1016/j.jhazmat.2018.11.103.

    Article  CAS  Google Scholar 

  • Zheng, R., Chen, Z., Cai, C., Tie, B., Liu, X., Reid, B. J., Huang, Q., Lei, M., Sun, G., & Baltrėnaitė, E. (2015). Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment — a field experiment in Hunan, China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-015-4268-2.

  • Zou, Q., Xiang, H., Jiang, J., Li, D., Aihemaiti, A., Yan, F., & Liu, N. (2019). Vanadium and chromium-contaminated soil remediation using VFAs derived from food waste as soil washing agents: a case study. Journal of Environmental Management, 232, 895–901. https://doi.org/10.1016/j.jenvman.2018.11.129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Brevik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbehiry, F., Elbasiouny, H., Ali, R. et al. Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils. Water Air Soil Pollut 231, 204 (2020). https://doi.org/10.1007/s11270-020-04493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04493-2

Keywords

Navigation