Skip to main content
Log in

Effects of Soil Residual Plastic Film on Soil Microbial Community Structure and Fertility

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Plastic films have previously displayed tremendous potential to increase water use efficiency in farmland and the yield of cash crops; however, long-term use of plastic film in soils can influence soil physiological and biochemical characteristics and change its biota. The present study aimed to investigate the effects of residual plastic film pollution on soil microbe community structure and fertility in Xinjiang province, China. Residual plastic film-contaminated soil and non-contaminated soil in Xinjiang farmland were selected for this study. The results indicated that residual plastic film pollution changed the structure of the soil biological community by significantly decreasing and increasing the abundance of Actinomycetes and Proteobacteria, respectively; further, the pollution decreased soil organic matter and inorganic nitrogen content by downregulating microbial genes related to soil carbon and nitrogen cycles and decreasing related enzymatic activities. The present results indicated that long-term residual plastic film exposure (more than 10 years) in farmland significantly decreases soil fertility and alters the microbial community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avidano, L., Gamalero, E., Cossa, G. P., & Carraro, E. (2005). Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 30, 21–33.

    Article  Google Scholar 

  • Bergkemper, F., Scholer, A., Engel, M., Lang, F., Kruger, J., Schloter, M., & Schulz, S. (2016). Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology, 18, 1988–2000.

    Article  CAS  Google Scholar 

  • Cai, Z., Wang, J., Ma, J., Zhu, X., Cai, J., & Yang, G. (2015). Anaerobic degradation pathway of the novel chiral insecticide paichongding and its impact on bacterial communities in soils. Journal of Agricultural and Food Chemistry, 63, 7151–7160.

    Article  CAS  Google Scholar 

  • Chen, H., Yao, J., Wang, F., Choi, M. M., Bramanti, E., & Zaray, G. (2009). Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. Journal of Hazardous Materials, 167, 846–851.

    Article  CAS  Google Scholar 

  • Chen, H., Zhuang, R., Yao, J., Wang, F., & Qian, Y. (2013). A comparative study on the impact of phthalate esters on soil microbial activity. Bulletin of Environmental Contamination and Toxicology, 91, 217–223.

    Article  CAS  Google Scholar 

  • Chen, Q., Li, T., Gui, M., Liu, S., Zheng, M., & Ni, J. (2017a). Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresource Technology, 239, 21–27.

    Article  CAS  Google Scholar 

  • Chen, S., Li, X., Lavoie, M., Jin, Y., Xu, J., Fu, Z., & Qian, H. (2017b). Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. Journal of Environmental Sciences (China), 51, 352–360.

    Article  Google Scholar 

  • Da, S. A., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., & Quaggio, R. B. (2002). Comparison of the genomes of two xanthomonas pathogens with differing host specificities. Nature, 417, 459–463.

    Article  Google Scholar 

  • Delgado-Baquerizo, M., Grinyer, J., Reich, P. B., Singh, B. K., & Allen, E. (2016). Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Functional Ecology, 30, 1862–1873.

    Article  Google Scholar 

  • Doran, J. W., Karlen, D. L., & Weinhold, B. J. (2003). Soil quality: humankind’s foundation for survival. Journal of Soil & Water Conservation, 58, 171–179.

    Google Scholar 

  • Espí, E., Salmerón, A., Fontecha, A., García, Y., & Real, A. I. (2006). Plastic films for agricultural applications journal of plastic. Journal of Plastic Film & Sheeting, 22, 85–102.

    Article  CAS  Google Scholar 

  • Fu, X., & Du, Q. (2011). Uptake of Di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses. Journal of Agricultural and Food Chemistry, 59, 11585–11588.

    Article  CAS  Google Scholar 

  • González-Pelayo, O., Andreu, V., Campo, J., Gimeno-García, E., & Rubio, J. L. (2006). Hydrological properties of a mediterranean soil burned with different fire intensities. Catena, 68, 186–193.

    Article  Google Scholar 

  • Hanada, S., & Sekiguchi, Y. (2014). The phylum gemmatimonadetes (pp. 677–681). Berlin: Springer.

    Google Scholar 

  • Heylen, K., Gevers, D., Vanparys, B., Wittebolle, L., Geets, J., Boon, N., & De Vos, P. (2006). The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environmental Microbiology, 8, 2012–2021.

    Article  CAS  Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., & Andrady, A. (2015). Marine pollution. Plastic waste inputs from land into the ocean. Science, 347, 768–771.

    Article  CAS  Google Scholar 

  • Kennedy, A. C., & Smith, K. L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant & Soil, 170, 75–86.

    Article  CAS  Google Scholar 

  • Kong, S., Ji, Y., Liu, L., Chen, L., Zhao, X., & Wang, J. (2012). Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environmental Pollution, 170, 161–168.

    Article  CAS  Google Scholar 

  • Leys, N. M., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E. M., & Springael, D. (2004). Occurrence and phylogenetic diversity of sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied & Environmental Microbiology, 70, 1944–1955.

    Article  CAS  Google Scholar 

  • Li, X., Ke, M., Zhang, M., Peijnenburg, W. J. G. M., Fan, X., & Xu, J. (2018). The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environmental Pollution, 232, 212–219.

    Article  CAS  Google Scholar 

  • Liu, E. K., He, W. Q., & Yan, C. R. (2014). ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 091001.

    Article  Google Scholar 

  • Lu, T., Zhu, Y., Xu, J., Ke, M., Zhang, M., Tan, C., et al. (2018). Evaluation of the toxic response induced by azoxystrobin in the non-target green alga chlorella pyrenoidosa. Environmental Pollution, 234, 379–388.

    Article  CAS  Google Scholar 

  • Qian, H., Hu, B., Cao, D., Chen, W., Xu, X., & Lu, Y. (2007a). Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR. Bulletin of Environmental Contamination & Toxicology, 78, 239–244.

    Article  CAS  Google Scholar 

  • Qian, H., Hu, B., Wang, Z., Xu, X., & Hong, T. (2007b). Effects of validamycin on some enzymatic activities in soil. Environmental Monitoring and Assessment, 125, 1–8.

    Article  CAS  Google Scholar 

  • Raya-Moreno, I., Canizares, R., Domene, X., Carabassa, V., & Alcaniz, J. M. (2017). Comparing current chemical methods to assess biochar organic carbon in a Mediterranean agricultural soil amended with two different biochars. Science of the Total Environment, 598, 604–618.

    Article  CAS  Google Scholar 

  • Rhoades, J. D., Shouse, P. J., Alves, W. J., Manteghi, N. A., & Lesch, S. M. (1990). Determining soil salinity from soil electrical conductivity using different models and estimates. Soil Science Society of America Journal, 54, 46–54.

    Article  Google Scholar 

  • Rong, Y., Wang, Y., Guan, Y., Ma, J., Cai, Z., & Yang, G. (2017). Pyrosequencing reveals soil enzyme activities and bacterial communities impacted by graphene and its oxides. Journal of Agricultural and Food Chemistry, 65, 9191–9199.

    Article  CAS  Google Scholar 

  • Samborska, A., Stepniewska, Z., & Stepniewski, W. (2004). Influence of different oxidation states of chromium (VI, III) on soil urease activity. Geoderma, 122, 317–322.

    Article  CAS  Google Scholar 

  • Sen, F., Uzunsoy, I., Basturk, E., & Kahraman, M. V. (2017). Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydrate Polymers, 170, 264–270.

    Article  CAS  Google Scholar 

  • Son, S. H., Khan, Z., Kim, S. G., & Kim, Y. H. (2009). Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. Journal of Applied Microbiology, 107, 524–532.

    Article  CAS  Google Scholar 

  • Song, H., Xu, J., Lavoie, M., Fan, X., Liu, G., & Sun, L. (2017). Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (west lake, China). Applied Microbiology and Biotechnology, 101, 1–12.

    Article  CAS  Google Scholar 

  • Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., & Tröger, J. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705.

    Article  CAS  Google Scholar 

  • Tao, R., Wakelin, S. A., Liang, Y., Hu, B., & Chu, G. (2018). Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Science of the Total Environment, 612, 739–749.

    Article  CAS  Google Scholar 

  • Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology, 59, 489–496.

    Article  CAS  Google Scholar 

  • Wang, B., Wang, Q., Liu, W., Liu, X., Hou, J., & Teng, Y. (2017). Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere, 182, 137–142.

    Article  CAS  Google Scholar 

  • Wang, J., Lv, S., Zhang, M., Chen, G., Zhu, T., & Zhang, S. (2016). Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere, 151, 171–177.

    Article  CAS  Google Scholar 

  • Wang, L., Jiang, G. B., Cai, Y. Q., He, B., Wang, Y. W., & Shen, D. Z. (2007). Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples. Journal of Environmental Sciences, 19, 874–878.

    Article  CAS  Google Scholar 

  • Wang, X., Yuan, X., Hou, Z., Miao, J., Zhu, H., & Song, C. (2009). Effect of di-(2-ethylhexyl) phthalate (DEHP) on microbial biomass C and enzymatic activities in soil European. Journal of Soil Biology, 45, 370–376.

    Article  CAS  Google Scholar 

  • Wei, Q., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Scientific Reports, 5, 2045–2322.

    Google Scholar 

  • Wu, D., Senbayram, M., Well, R., Brüggemann, N., Pfeiffer, B., & Loick, N. (2017). Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biology and Biochemistry, 104, 197–207.

    Article  CAS  Google Scholar 

  • Wu, P. (2002). Water and nitrogen use efficiency of lowland rice in ground covering rice production system in south China. Journal of Plant Nutrition, 25, 1855–1862.

    Article  Google Scholar 

  • Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., & Lin, X. (2011). Autotrophic growth of nitrifying community in an agricultural soil. The ISME Journal, 5, 1226–1236.

    Article  CAS  Google Scholar 

  • Xie, H. J., Shi, Y. J., Zhang, J., Cui, Y., Teng, S. X., & Wang, S. G. (2010). Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity. Journal of Chemical Technology & Biotechnology, 85, 1108–1116.

    Article  CAS  Google Scholar 

  • Xu, G., Li, F., & Wang, Q. (2008). Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Science of the Total Environment, 393, 333–340.

    Article  CAS  Google Scholar 

  • Zhou, Q. H., Wu, Z. B., Cheng, S. P., He, F., & Fu, G. P. (2005). Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry, 37, 1454–1459.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (21777144), a One Hundred Talents Program of Chinese Academy of Sciences grant to H.F. Qian, and Xingjiang Uighur Autonomous Region Talent Project to H.F. Qian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qian.

Electronic Supplementary Material

Table S1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Zhang, M., Liu, G. et al. Effects of Soil Residual Plastic Film on Soil Microbial Community Structure and Fertility. Water Air Soil Pollut 229, 261 (2018). https://doi.org/10.1007/s11270-018-3916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3916-9

Keywords

Navigation