Skip to main content
Log in

Comparison of Activated Carbon and Physic Seed Hull for the Removal of Malachite Green Dye from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present work, the effectiveness of physic seed hull, PSH (Jatropha curcas L.), as an alternative low-cost adsorbent for the removal of malachite green (MG) dye from simulated wastewater has been studied. It has been observed that PSH has remarkable adsorption capacity compared to granular activated carbon. The PSH adsorbent was characterized by SEM-EDX, BET, CHNS, zeta potential, and FTIR techniques. The adsorption behaviors such as adsorption kinetics, adsorption dynamics, and adsorption isotherms of PSH for the removal of MG dye from aqueous solution were studied in detail. The kinetic data fitted well with the pseudo second-order kinetic model for MG adsorption. Langmuir isotherm was found to be the model best fitted to describe the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdullah, A. G. L., Mohd Salleh, M. A., Siti Mazlina, M. K., Megat Mohd Noor, M. J., Osman, M. R., Wagiran, R., & Sobri, S. (2005). Azo dye removal by adsorption using waste biomass: sugarcane bagasse. International Journal of Engineering and Technology, 2(1), 8–13.

    Google Scholar 

  • Abia, A. A., & Asuquo, E. D. (2006). Lead (ii) and nickel (ii) adsorption kinetics from aqueous metal solutions using chemically modified and unmodified agricultural adsorbents. African Journal of Biotechnology, 5(16), 1475–1482.

    CAS  Google Scholar 

  • Adamson, A. W. (1967). Physical chemistry of surfaces (2nd ed.). New York: Interscience Publishers Inc..

    Google Scholar 

  • Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M., Monson, P. A., Pez, G., Scherer, G. W., Vartuli, J. C., & Yaghir, O. M. (1999). Tailored porous materials. Chemistry of Materials, 11, 2633–2656.

    Article  CAS  Google Scholar 

  • Bekci, Z., Ozveri, C., Seki, Y., & Yurdakoc, K. (2008). Sorption of malachite green on chitosan bead. Journal of Hazardous Materials, 154, 254–261.

    Article  CAS  Google Scholar 

  • Bulut, E., Ozacar, M., & Sengil, I. A. (2008). Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous and Mesoporous Materials, 115, 234–246.

    Article  CAS  Google Scholar 

  • Bursali, E. A., Cavas, L., Seki, Y., Bozkurt, S. S., & Yurdakoc, M. (2009). Sorption of boron by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Chemical Engineering Journal, 150, 385390. https://doi.org/10.1016/j.cej.2009.01.016

    Article  Google Scholar 

  • Chen, X., Jeyaseelan, S., & Graham, N. (2002). Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management, 22, 755–760.

    Article  CAS  Google Scholar 

  • Cho, B. P., Yang, T., Blankenship, L. R., Moody, J. D., Churchwell, M., Beland, F. A., & Culp, S. J. (2003). Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green. Chemical Research in Toxicology, 16(3), 285–294. https://doi.org/10.1021/tx0256679

    Article  CAS  Google Scholar 

  • Christie, R. M. (2001). Colour chemistry (p. 205). U.K.: The Royal Society of Chemistry.

    Google Scholar 

  • Culp, S. J., Beland, F. A., Heflich, R. H., Benson, R. W., Blankenship, L. R., Webb, P. J., Mellick, P. W., Trotter, R. W., Shelton, S. D., Greenlees, K. J., & Manjanatha, M. G. (2002). Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutation Research, 506-507, 55–63. https://doi.org/10.1016/S0027-5107(02)00152-5

    Article  CAS  Google Scholar 

  • Freundlich, H. (1926). Colloid and capillary chemistry. London: Metheun.

    Google Scholar 

  • Garg, V. K., Gupta, R., Vadar, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121–124.

    Article  CAS  Google Scholar 

  • Garg, V. K., Kumar, R., & Gupta, R. (2004). Removal of malachite green dye from aqueous solution by adsorption using agroindustries waste: a case study of Phosopis ceneraria. Dyes and Pigments, 62, 1–10.

    Article  CAS  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. I & EC Fundam., 5, 212–223.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1978). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70, 115–124.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38, 1047–1061.

    Article  CAS  Google Scholar 

  • Ho, Y.S. and Mckay, J.C., 1998. Kinetic models for the sorption of dye from aqueous solution by wood. Trans IChemE, Vol 76, Part B.

  • Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1996). Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environmental Technology, 17, 71–77.

    Article  CAS  Google Scholar 

  • Horsfall, M. J., & Spiff, A. I. (2005). Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia Occidentalis Hook f.) Waste Biomass. Acta Chim, 52, 174–181.

    Google Scholar 

  • Husseien, M., Amer, A. A., El-Maghraby, A., & Taha, N. A. (2007). Utilization of barley straw as a source of an activated carbon for removal of methylene blue from aqueous solution. Journal of Applied Sciences Research, 3(11), 1352–1358.

    CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Bhatnagar, A., & Suhas. (2003). Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, B101, 31–42.

    Article  Google Scholar 

  • Jain, C. K. (2001). Adsorption of zinc onto bed sediments of the river Ganga; adsorption models and kinetics. Hydrol. Sci. J. des Sci. Hydrologiques., 46(3), 419–434.

    Article  CAS  Google Scholar 

  • Janoš, P., & Šmídová, V. (2005). Effects of surfactants on the adsorptive removal of basic dyes from water using an organomineral sorbent—iron humate. Journal of Colloid and Interface Science, 291, 19–27.

    Article  Google Scholar 

  • Jumasiah, A., Chuah, T. G., Gimbon, J., Choong, T. S. Y., & Azni, I. (2005). Adsorption of basic dye onto palm kernel shell activated carbon: sorption equilibrium and kinetics studies. Desalination, 186, 57–64.

    Article  CAS  Google Scholar 

  • Krishnan, K.A. and Anirudhan, T.S., 2003. Removal of cadmium (II) from aqueous solutions by steam activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. ISSN 0378-4738 = Water SA Vol. 29 No. 2.

  • Lagergren, S., & Svenska, B. K. (1898). Zur theorie der sogenannten adsorption geloester stoffe. Veternskapsakad Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, Soc., 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Malik, P. K. (2003). Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes and Pigments, 56, 239e49.

    Article  Google Scholar 

  • Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138.

    Article  CAS  Google Scholar 

  • Marcilla, A., Beltrán, M. I., & Navarro, R. (2007). Application of TG/FTIR to the study of the regeneration process of HUSY and HZSM5 zeolites. Journal of Thermal Analysis and Calorimetry, 87(2), 325–330.

    Article  CAS  Google Scholar 

  • McKay, G. (1981). Design models for adsorption systems in wastewater treatment. Journal of Chemical Technology and Biotechnology, 81(31), 717–731.

    Article  Google Scholar 

  • Medham, J., Denny, R.C., Barnes, J.D., Thomas, M., 2000. Vogel’s textbook of quantitative chemical analysis (5th. ed.). Harlow, Pearson Education.

  • Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, malachite green, from wastewater by using hen feathers. Journal of Hazardous Materials, 133, 196–202.

    Article  CAS  Google Scholar 

  • Mohd Azmier Ahmad, M. A., Ahmad, N., & Bello, O. S. (2014). Adsorptive removal of malachite green dye using durian seed-based activated carbon. Water, Air, and Soil Pollution, 225, 2057.

    Article  Google Scholar 

  • Pearson, R. G. (1988). Absolute electronegativity and hardness: application. Inorganic Chemistry, 27, 734–738.

    Article  CAS  Google Scholar 

  • Rao, M. M., Ramesh, A., Rao, G. P. C., & Seshaiah, K. (2006). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 129, 123–129.

    Article  Google Scholar 

  • Rangel-mendez, J.R. and Streat, M., 2001. Mercury and cadmium adsorption by conventional and modified granular activated carbon. The American Carbon Society. Carbon Conference Archive 1995–2007, 25.4.

  • Ravi Kumar, M. N. V., Sridhari, T. R., Bhavani, K. D., & Dutta, P. K. (1998). Trends in colour removal from textile mill effluents. Colorage, 40, 25–34.

    Google Scholar 

  • Schnoor, J. L. (1996). Environmental modeling: fate and transport of pollutants in water, air and soil. New York: Wiley and Sons INC..

    Google Scholar 

  • Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66, 319–329.

    Article  CAS  Google Scholar 

  • Sudova, E., Machova, J., Svobodova, Z., & Vesely, T. (2007). Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Veterinary Medicinal, 52, 527–539.

    CAS  Google Scholar 

  • Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37, 1535–1544.

    Article  CAS  Google Scholar 

  • Treybal, R.E., 1968. Mass transfer operations. Second ed., McGraw Hill, New York.

  • Vinke, P., Van der Eijk, M., Verbree, M., Voskamp, A. F., & Van Bekkum, H. (1994). Modification of the surfaces of a gas activated carbon and chemically activated carbon with nitric acid, hydrochloric and ammonia. Carbon, 32, 675.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, Y., Zhang, C., & Jing, Y. (2008). Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. Journal of Hazardous Materials, 150, 774–782.

    Article  CAS  Google Scholar 

  • Zheng, Y., Zhu, Y. F., Wang, F., & Wang, A. (2015). Gelatin-grafted granular composite hydrogel for selective removal of malachite green. Water, Air, and Soil Pollution, 226, 354.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support FRGS/1/2014/TK04/UKM/03/2 and GGPM-2014-027 from CRIM (Centre of Research and Instrument Management, UKM and KPT (Kementerian Pengajian Tinggi), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masita Mohammad.

Ethics declarations

M.M. performed the experimental works, analyzed the data, and wrote the manuscript, S. M. designed the experiment, and B.K.D. performed the technical check and modeling.

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The dye concentration retained in the adsorbent phase:

$$ {q}_t=\frac{\left(\;{C}_0-{C}_t\right)\;V}{m} $$
(1)

The Lagergren pseudo first-order model (Lagergren and Svenska 1898):

$$ \log\;\left({q}_{\mathrm{e}}-{q}_t\right)\kern0.36em =\kern0.36em \log \kern0.24em {q}_{\mathrm{e}}-\frac{K_1}{2.303}t $$
(2)

Pseudo second-order model (Jain 2001; Ho and Mckay 1998):

$$ \frac{\mathrm{dq}}{\mathrm{dt}}={K}_2\;{\left(\;{q}_{\mathrm{e}}-{q}_t\;\right)}^2 $$
(3)

Integrating and applying boundary conditions t = 0 to t = t and q = 0 to q = q t gives:

$$ \frac{t}{q_t}=\frac{1}{K_2\;{q}_{\mathrm{e}}^2}+\frac{1}{q_{\mathrm{e}}}\;t $$
(4)

A plot between t/q t versus t allows the value of the constants K 2 (g/mg h) and qe (mg/g) to be calculated. The constant K2 is used to calculate the initial sorption rate h, at t → 0, as follows:

$$ h\kern0.36em ={K}_2\;{q}_{\mathrm{e}}^2 $$
(5)

The linearized form of Langmuir isotherm (Langmuir 1918):

$$ \frac{1}{q_{\mathrm{e}}}=\left(\frac{1}{K_{\mathrm{a}}\;{q}_{\mathrm{m}}}\right)\;\frac{1}{C_{\mathrm{e}}}\kern0.36em +\frac{1}{q_{\mathrm{m}}} $$
(6)

Dimensionless constant separation factor RL (Hall et al. 1966):

$$ {R}_{\mathrm{L}}=\frac{1}{1+{\mathrm{bC}}_0} $$
(7)

The value of RL indicates RL = 1, favorable (0 < RL < 1) or irreversible (RL = 0).

The linearized form of Freundlich adsorption isotherm (Adamson 1967; Freundlich 1926):

$$ \ln\;{q}_{\mathrm{e}}=\ln {K}_{\mathrm{f}}+\frac{1}{n}\left(\ln {C}_{\mathrm{e}}\right) $$
(8)

1.1 Notation

A:

Area, m2

V:

Volume, m3

RL:

Separation factor

C 0 :

Initial concentration, mg/L

Ce:

Equilibrium concentration, mg/L

h :

Initial adsorption rate

k 1 :

Rate constant for first-order model, per minute

k 2 :

Rate constant for second-order model, g/mg h

k a :

Rate constant for Langmuir, mg/g

k f :

Rate constant for Freundlich

n :

adsorption intensity for Freundlich

b :

Langmuir constant, L/mg

q e :

Adsorbed amount at equilibrium, mg/g

q t :

Adsorbed amount at t time, mg/g

q m :

Adsorbed amount at maximum monolayer, mg/g

t :

Time, min

t 1/2 :

Half-time for adsorption, min

m :

Mass, g

R 2 :

Regression correlation coefficient

T :

Temperature, °C

1.2 Greek letters

Ǻ:

Angstrom

λ max :

Maximum wavelength, nm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, M., Maitra, S. & Dutta, B.K. Comparison of Activated Carbon and Physic Seed Hull for the Removal of Malachite Green Dye from Aqueous Solution. Water Air Soil Pollut 229, 45 (2018). https://doi.org/10.1007/s11270-018-3686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3686-4

Keywords

Navigation