Skip to main content
Log in

Light control on phytoplankton production in a shallow and turbid estuarine system

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Tagus estuary is one of the largest estuaries of Western Europe. With the aim of unravelling the drivers of primary production in this shallow and turbid nutrient replete estuary, we tested the hypothesis that light availability is a major factor controlling phytoplankton production. Environmental parameters, phytoplankton biomass, community composition, and photosynthetic parameters were monitored at two sites in the estuary during a complete annual cycle. Despite the fact that nutrient concentrations were always above growth-limiting values, Chl a concentrations were relatively low throughout the study period. High water column turbidity, due to riverine inputs, promoted a rapid attenuation of light and created a compressed profile with optimal photosynthetic conditions. Therefore, the phytoplankton community, dominated by small cells, such as diatoms and cryptophycean flagellates, displayed highly photosynthetic efficiency and low light-saturated photosynthetic rates as a photo-acclimation response to low light conditions year-round. Primary production rate was unimodal, peaking in the summer months. In such estuarine system, gross primary production could thus be predicted by an existing robust empirical model based on pigment standing crop (Chl a), surface irradiance (E 0) and optical depth (Z eup). Compared to other shallow estuaries, the Tagus can be classified as a low- to moderately productive estuary, being the turbidity-induced low light conditions the principal factor limiting phytoplankton growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The term “adaptation” is used here on a physiological level, as a phenotypic response of algae to changes in irradiance at the organism level (Falkowski & LaRoche, 1991).

References

  • Aguirre-Hernández, E., G. Gaxiola-Castro, S. Nájera-Martínez, T. Baumgartner, M. Kahru & B. Mitchell, 2004. Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: summer and autumn 1998. Deep-Sea Research II 51: 799–816.

    Google Scholar 

  • Behrenfeld, M. J. & P. Falkowski, 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42: 1–20.

    Article  CAS  Google Scholar 

  • Behrenfeld, M. J., E. Marañón, D. A. Siegel & S. B. Hooker, 2002. Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production. Marine Ecology Progress Series 228: 103–117.

    Article  CAS  Google Scholar 

  • Bendschneider, K. & N. Robison, 1952. A new spectrophotometric determination of nitrite in seawater. Journal of Marine Research 11: 87–96.

    CAS  Google Scholar 

  • Bouman, H., T. Platt, S. Sathyendranath & V. Stuart, 2005. Dependence of light saturated photosynthesis on temperature and community structure. Deep-Sea Research I 52: 1284–1299.

    Article  Google Scholar 

  • Boyer, J., R. Christian & D. Stanley, 1993. Patterns of phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Marine Ecology Progress Series 97: 287–297.

    Article  Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Cabeçadas, L., 1999. Phytoplankton production in Tagus estuary (Portugal). Oceanologica Acta 22: 205–213.

    Article  Google Scholar 

  • Cabrita, M. T., 1997. Inorganic Nitrogen Dynamics in the Tagus Estuary (Portugal)—Spatial and Temporal Variation in Input and Uptake of Nitrate and Ammonium. PhD Dissertation, University of Lisbon, Portugal.

  • Cabrita, M. T. & M. T. Moita, 1995. Spatial and temporal variation of physicochemical conditions and phytoplankton during a dry year in the Tagus estuary (Portugal). Netherlands Journal of Aquatic Ecology 29: 323–332.

    Article  CAS  Google Scholar 

  • Cadée, G. & J. Hegeman, 1993. Persisting high levels of primary production at declining phosphate concentrations in the Dutch coastal area (Marsdiep). Netherlands Journal of Sea Research 31: 147–152.

    Article  Google Scholar 

  • Cloern, J. E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381.

    Article  Google Scholar 

  • Cole, B. & J. Cloern, 1984. Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay. Marine Ecology Progress Series 17: 15–24.

    Article  Google Scholar 

  • Cole, B. & J. Cloern, 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36: 299–305.

    Article  Google Scholar 

  • Cole, J., J. E. Cloern & A. E. Alpine, 1986. Biomass and productivity of three phytoplankton size classes in San Francisco Bay. Estuaries 9: 117–126.

    Article  Google Scholar 

  • Cole, J., N. Caraco & B. Peierls, 1992. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary? Limnology and Oceanography 37: 1608–1617.

    Article  CAS  Google Scholar 

  • Côté, B. & T. Platt, 1983. Day-to-day variations in the spring–summer photosynthetic parameters of coastal marine phytoplankton. Limnology and Oceanography 28: 320–344.

    Article  Google Scholar 

  • Dortch, Q. & T. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12: 1293–1309.

    Article  Google Scholar 

  • Dubinski, Z., 1980. Light utilization efficiency in natural phytoplankton communities. In Falkowski, P. G. (ed.), Primary Productivity in the Sea. Plenum, New York/London: 83–98.

    Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin 70: 1063–1085.

    Google Scholar 

  • Falkowski, P. G., 1981. Light-shade adaptation and assimilation numbers. Journal of Plankton Research 3: 203–216.

    Article  CAS  Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Acclimation to spectral irradiance in algae. Journal of Phycology 27: 8–14.

    Article  Google Scholar 

  • Falkowski, P. G. & J. A. Raven, 1997. Aquatic Photosynthesis. Blackwell Science, Malden, MA.

    Google Scholar 

  • Fanning, K. & M. Pilson, 1973. On the spectrophotometric determination of dissolved silica in natural waters. Analytical Chemistry 45: 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, T., L. Harding Jr., D. Stanley & L. Ward, 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuarine, Coastal and Shelf Science 27: 61–93.

    Article  CAS  Google Scholar 

  • Gameiro, C. & V. Brotas, 2010. Patterns of phytoplankton variability in the Tagus estuary (Portugal). Estuaries and Coasts 33: 311–323.

    Article  CAS  Google Scholar 

  • Gameiro, C., P. Cartaxana, M. T. Cabrita & V. Brotas, 2004. Variability in chlorophyll and phytoplankton composition in an estuarine system. Hydrobiologia 525: 113–124.

    Article  CAS  Google Scholar 

  • Gameiro, C., P. Cartaxana & V. Brotas, 2007. Environmental drivers of phytoplankton distribution and composition in Tagus Estuary, Portugal. Estuarine, Coastal and Shelf Science 75: 21–34.

    Article  Google Scholar 

  • Geider, R., T. Platt & J. Raven, 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Marine Ecology Progress Series 30: 93–104.

    Article  CAS  Google Scholar 

  • Geider, R., H. MacIntyre & T. Kana, 1998. A dynamic regulatory model of phytoplankton acclimation to light, nutrients and temperature. Limnology and Oceanography 43: 679–694.

    Article  CAS  Google Scholar 

  • Glé, C., Y. Amo, B. Sautour, P. Laborde & P. Chardy, 2008. Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystems (Arcachon Bay, France). Estuarine, Coastal and Shelf Science 76: 642–656.

    Article  Google Scholar 

  • Grasshoff, K., 1976. Methods of Seawater Analysis. Verlag Chimie, New York.

    Google Scholar 

  • Grobbelaar, J., 1990. Modelling phytoplankton productivity in turbid waters with small euphotic to mixing depth ratios. Journal of Plankton Research 12: 923–931.

    Article  Google Scholar 

  • Hammer, A., R. Schumann & H. Schubert, 2002. Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance. Aquatic Microbial Ecology 29: 287–296.

    Article  Google Scholar 

  • Harding, L., M. Mallonee & E. Perry, 2002. Toward a predictive understanding of primary productivity in a temperate, partially stratified estuary. Estuarine, Coastal and Shelf Science 55: 437–463.

    Article  CAS  Google Scholar 

  • Harrison, W. G. & T. Platt, 1986. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biology 5: 153–164.

    Article  Google Scholar 

  • Hasle, G., 1978. The invert-microscope method. In Sournia, A. (ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology. Unesco Publishers, Paris: 88–96.

    Google Scholar 

  • Irigoien, X. & J. Castel, 1997. Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: the Gironde (SW France). Estuarine, Coastal and Shelf Science 44: 507–517.

    Article  CAS  Google Scholar 

  • Jassby, A., J. Cloern & B. Cole, 2002. Annual production: patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnology and Oceanography 47: 698–712.

    Article  Google Scholar 

  • Joint, I. & A. Pomroy, 1981. Primary production in a turbid estuary. Estuarine, Coastal and Shelf Science 13: 303–316.

    Article  Google Scholar 

  • Jumars, P. A., 1993. Concepts in Biological Oceanography: a interdisciplinary primer. Oxford University Press, NY.

    Google Scholar 

  • Kocum, E., G. Underwood & D. Nedwell, 2002. Simultaneous measurements of phytoplanktonic primary production, nutrient and light availability along a turbid, eutrophic UK east coast estuary (the Colne Estuary). Marine Ecology Progress Series 131: 1–12.

    Article  Google Scholar 

  • Koroleff, F., 1969/1970. Direct determination of ammonia in natural waters as indophenol blue. ICES Comm. Meet Pap. 1969/C:9, Interlab Report 3.

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kromkamp, J. & J. Peene, 1995. Possibility of net phytoplankton primary production in the turbid Schelde estuary (SW Netherlands). Marine Ecology Progress Series 121: 249–259.

    Article  Google Scholar 

  • Kromkamp, J., J. Peene, P. van Rijswijk, A. Sandee & N. Goosen, 1995. Nutrients, light and primary production by phytoplankton and microphytobenthos in the eutrophic, turbid Westerschelde estuary (the Netherlands). Hydrobiologia 311: 9–19.

    Article  Google Scholar 

  • Lohrenz, S., G. Fahnenstiel & D. Redalje, 1994. Spatial and temporal variations of photosynthetic parameters in relation to environmental conditions in coastal waters of the Northern Gulf of Mexico. Estuaries 17: 779–795.

    Article  CAS  Google Scholar 

  • Lorenzen, C., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Martins, M., J. Ferreira, T. Calvão & H. Figueiredo, 1984. Nutrientes no estuário do Tejo: Comparação da situação em caudais médios e em cheia, com destaque para alterações na qualidade da água. I simposio Luso-Brasileiro de Engenharia sanitaria e ambiental.

  • Monbet, Y., 1992. Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries 15: 563–571.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nixon, S. V., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Nixon, S. W., J. R. Kelly, B. N. Furnas, C. A. Oviatt & S. S. Hale, 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In Tenore, K. R. & B. C. Coull (eds), Marine Benthic Dynamics. University South Carolina Press, Columbia: 219–242.

    Google Scholar 

  • Oviatt, C., A. Keller & L. Reed, 2002. Annual primary production in Narragansett Bay with no bay-wide winter–spring phytoplankton bloom. Estuarine, Coastal and Shelf Science 54: 1013–1026.

    Article  CAS  Google Scholar 

  • Parsons, T., M. Takahashi & B. Hargrave, 1984. Biological Oeanographic Processes. Pergamon Press, Oxford.

    Google Scholar 

  • Pennock, J. & J. Sharp, 1986. Phytoplankton production in the Delaware estuary: temporal and spatial variability. Marine Ecology Progress Series 34: 143–155.

    Article  Google Scholar 

  • Platt, T., C. Gallegos & W. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Platt, T., S. Sathyendranath & P. Ravindran, 1990. Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proceedings of the Royal Society of London B 241: 101–111.

    Article  Google Scholar 

  • R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Raven, J., 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology 12: 503–513.

    Article  Google Scholar 

  • Sakshaug, E., A. Bricaud, Y. Dandonneau, P. Falkowski, D. Kiefer, L. Legendre, A. Morel, J. Parslow & M. Takahashi, 1997. Parameters of photosynthesis: definitions, theory and interpretation of results. Journal of Plankton Research 19: 1637–1670.

    Article  CAS  Google Scholar 

  • Struski, C. & C. Bacher, 2006. Preliminary estimate of primary production by phytoplankton in Marennes-Oléron Bay, France. Estuarine, Coastal and Shelf Science 66: 323–334.

    Article  Google Scholar 

  • Talling, J. F., 1957. Photosynthetic characteristics of some freshwater diatoms in relation underwater radiation. New Phytologist 56: 29–50.

    Article  Google Scholar 

  • Tillmann, U., K. Hesse & F. Colijn, 2000. Planktonic primary production in the German Wadden Sea. Journal of Plankton Research 22: 1253–1276.

    Article  CAS  Google Scholar 

  • Underwood, G. J. C. & J. Kromkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93–153.

    Article  CAS  Google Scholar 

  • Vale, C. & B. Sündby, 1987. Suspended sediment fluctuations in the Tagus estuary on semi-diurnal and fortnightly time scales. Estuarine, Coastal and Shelf Science 25: 495–508.

    Article  Google Scholar 

  • Van Spaedonk, J. C. M., J. Kromkamp & P. R. M. de Visscher, 1993. Primary production of phytoplankton in a turbid coastal plain estuary, the Westerschelde (The Netherlands). Netherlands Journal of Sea Research 31: 267–279.

    Article  Google Scholar 

  • Verity, P., 1986. Grazing of phototrophic nanoplankton by microzooplankton in the Narragansett Bay. Marine Ecology Progress Series 29: 105–115.

    Article  Google Scholar 

  • Vollenweider, R. A., F. Giovanardi, G. Montanari & A. Rinaldi, 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9: 329–357.

    Article  CAS  Google Scholar 

  • Williams, P., 1993. Chemical and tracer methods of measuring plankton production. In Li, W. K. W. & S. Y. Maestrini (eds), Measurement of Primary Production from the Molecular to the Global Scale, Vol. 197. ICES MSS, Copenhagen: 20–36.

    Google Scholar 

  • Wofsy, S., 1983. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnology and Oceanography 28: 1144–1155.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. T. Platt, B. Jesus, P. Cartaxana, M.T. Cabrita and two anonymous reviewers for their valuable ideas and criticisms that greatly improved this paper during analysis of the results and writing of the paper. We also thank R. Mendes for sampling and analytical assistance. This work was funded by Valor Sul SA and FCT by means of project INTAGUS (PDCT/MAR/58022/2004). C. Gameiro was funded by a FCT PhD grant (POCI-2010/BD/13988/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Gameiro.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gameiro, C., Zwolinski, J. & Brotas, V. Light control on phytoplankton production in a shallow and turbid estuarine system. Hydrobiologia 669, 249–263 (2011). https://doi.org/10.1007/s10750-011-0695-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0695-3

Keywords

Navigation