Skip to main content

Advertisement

Log in

Retention and Transport of PAH-Degrading Bacterium Herbaspirillum chlorophenolicum FA1 in Saturated Porous Media Under Various Physicochemical Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dispersal of functional microorganisms is a rate-limiting process during in situ bioremediation of contaminated soil and groundwater. In this work, series of column experiments were conducted to investigate the retention and transport behaviors of Herbaspirillum chlorophenolicum FA1, a promising bacterial agent for bioremediation, in saturated porous media under conditions of different combinations of grain size, solution pH, solution ionic strength (IS), and humic acid (HA) concentration. Experimental data showed that the mobility of FA1 in saturated porous media was strongly dependent on the physicochemical conditions. The breakthrough curves (BTCs) indicated that the amounts of FA1 in the effluent increased with increasing in sand size, solution pH, and HA concentration, but decreased with increase of solution IS. The shape of retention profiles (RPs) was hyper-exponential. The amounts of retained bacteria in the media also varied with the experimental conditions with opposite trends to that of effluent. Both experimental BTCs and RPs were simulated by a mathematical model that accounted for deposition kinetics to better interpret the effects of physicochemical conditions on FA1 deposition dynamics. Findings from this study showed that fate and transport of the functional bacterium FA1 in porous media strongly relied on the environmental conditions. Both experimental and modeling results can provide guidelines for field application of functional bacteria for soil and groundwater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abudalo, R. A., Ryan, J. N., Harvey, R. W., Metge, D. W., & Landkamer, L. (2010). Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium. Water Research, 44(4), 1104–1113.

    Article  CAS  Google Scholar 

  • Artinger, R., Buckau, G., Geyer, S., Fritz, P., Wolf, M., & Kim, J. I. (2000). Characterization of groundwater humic substances: influence of sedimentary organic carbon. Applied Geochemistry, 15(1), 97–116.

    Article  CAS  Google Scholar 

  • Bai, H., Cochet, N., Drelich, A., Pauss, A., & Lamy, E. (2016a). Comparison of transport between two bacteria in saturated porous media with distinct pore size distribution. RSC Advances, 6(18), 14602–14614.

    Article  CAS  Google Scholar 

  • Bai, H., Cochet, N., Pauss, A., & Lamy, E. (2016b). Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media. Colloids Surface B: Biointerfaces, 139, 148–155.

    Article  CAS  Google Scholar 

  • Bradford, S. A., & Kim, H. (2012). Causes and implications of colloid and microorganism retention hysteresis. Journal of Contaminant Hydrology, 138, 83–92.

    Article  Google Scholar 

  • Bradford, S. A., Simunek, J., Bettahar, M., Van Genuchten, M. T., & Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 37(10), 2242–2250.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Simunek, J., & Walker, S. L. (2006). Transport and straining of E. coli O157 : H7 in saturated porous media. Water Resources Research, 42(12). doi:10.1029/2005wr004805.

  • Bradford, S. A., Torkzaban, S., & Walker, S. L. (2007). Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Research, 41(13), 3012–3024.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Torkzaban, S., Kim, H., & Simunek, J. (2012). Modeling colloid and microorganism transport and release with transients in solution ionic strength. Water Resources Research, 48(9). doi:10.1029/2012wr012468.

  • Bradford, S. A., Morales, V. L., Zhang, W., Harvey, R. W., Packman, A. I., Mohanram, A., et al. (2013). Transport and fate of microbial pathogens in agricultural settings. Critical Reviews in Environmental Science and Technology, 43(8), 775–893.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Schijven, J., & Harter, T. (2015). Microbial transport and fate in the subsurface environment: introduction to the special section. Journal of Environmental Quality, 44(5), 1333–1337.

    Article  CAS  Google Scholar 

  • Crapulli, F., Santoro, D., Haas, C. N., Notarnicola, M., & Liberti, L. (2010). Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using computational fluid dynamics. Chemical Engineering Journal, 161(1), 9–18.

    Article  CAS  Google Scholar 

  • Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere, 172, 52–71.

    Article  Google Scholar 

  • Dong, S., Shi, X., Gao, B., Wu, J., Sun, Y., Guo, H., et al. (2016). Retention and release of graphene oxide in structured heterogeneous porous media under saturated and unsaturated conditions. Environmental Science & Technology, 50(19), 10397–10405.

    Article  CAS  Google Scholar 

  • Dwivedi, D., Mohanty, B. P., & Lesikar, B. J. (2016). Impact of the linked surface water-soil water-groundwater system on transport of E. coli in the subsurface. Water, Air, & Soil Pollution, 227(9), 351. doi:10.1007/s11270-016-3053-2.

    Article  Google Scholar 

  • Engström, E., Thunvik, R., Kulabako, R., & Balfors, B. (2015). Water transport, retention, and survival of Escherichia coli in unsaturated porous media: a comprehensive review of processes, models, and factors. Critical Reviews in Environmental Science and Technology, 45(1), 1–100.

    Article  Google Scholar 

  • Farrokhian Firouzi, A., Homaee, M., Klumpp, E., Kasteel, R., & Tappe, W. (2015). Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions. Journal of Hydrology and Hydromechanics, 63(2), 102–109.

    Article  CAS  Google Scholar 

  • Foppen, J. W., Liem, Y., & Schijven, J. (2008). Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Research, 42(1–2), 211–219.

    Article  CAS  Google Scholar 

  • Gargiulo, G., Bradford, S. A., Simunek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2008). Bacteria transport and deposition under unsaturated flow conditions: the role of water content and bacteria surface hydrophobicity. Vadose Zone Journal, 7(2), 406–419.

    Article  Google Scholar 

  • Ginn, T. R., Wood, B. D., Nelson, K. E., Scheibe, T. D., Murphy, E. M., & Clement, T. P. (2002). Processes in microbial transport in the natural subsurface. Advances in Water Resources, 25(8), 1017–1042.

    Article  CAS  Google Scholar 

  • Govarthanan, M., Lee, K. J., Cho, M., Kim, J. S., Kamala-Kannan, S., & Oh, B. T. (2013). Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere, 90(8), 2267–2272.

    Article  CAS  Google Scholar 

  • Gutman, J., Walker, S. L., Freger, V., & Herzberg, M. (2013). Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D). Environmental Science & Technology, 47(1), 398–404.

    Article  CAS  Google Scholar 

  • Han, P., Shen, X., Yang, H., Kim, H., & Tong, M. (2013). Influence of nutrient conditions on the transport of bacteria in saturated porous media. Colloids Surfaces B:Biointerfaces, 102, 752–758.

    Article  CAS  Google Scholar 

  • Haznedaroglu, B. Z., Kim, H. N., Bradford, S. A., & Walker, S. L. (2009). Relative transport behavior of Escherichia coli O157:H7 and Salmonella enterica serovar pullorum in packed bed column systems: influence of solution chemistry and cell concentration. Environmental Science & Technology, 43(6), 1838–1844.

    Article  CAS  Google Scholar 

  • Haznedaroglu, B., Zorlu, O., Hill, J., & Walker, S. (2010). Identifying the role of flagella in the transport of motile and nonmotile Salmonella enterica serovars. Environmental Science & Technology, 44(11), 4184–4190.

    Article  CAS  Google Scholar 

  • Jeon, S., Krasnow, C. S., Kirby, C. K., Granke, L. L., Hausbeck, M. K., & Zhang, W. (2016). Transport and retention of Phytophthora capsici zoospores in saturated porous media. Environmental Science & Technology, 50(17), 9270–9278.

    Article  CAS  Google Scholar 

  • Jimenez-Sanchez, C., Wick, L. Y., & Ortega-Calvo, J. J. (2012). Chemical effectors cause different motile behavior and deposition of bacteria in porous media. Environmental Science & Technology, 46(12), 6790–6797.

    Article  CAS  Google Scholar 

  • Jimenez-Sanchez, C., Wick, L. Y., Cantos, M., & Ortega-Calvo, J. J. (2015). Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport. Environmental Science & Technology, 49(7), 4498–4505.

    Article  CAS  Google Scholar 

  • Johanson, J. J., Feriancikova, L., Banerjee, A., Saffarini, D. A., Wang, L., Li, J., et al. (2014). Comparison of the transport of Bacteroides fragilis and Escherichia coli within saturated sand packs. Colloids and Surfaces B: Biointerfaces, 123, 439–445.

    Article  CAS  Google Scholar 

  • Johnson, P. R., Sun, N., & Elimelech, M. (1996). Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environmental Science & Technology, 30(11), 3284–3293.

    Article  CAS  Google Scholar 

  • Kim, H. N., Bradford, S. A., & Walker, S. L. (2009a). Escherichia coli O157:H7 transport in saturated porous media: role of solution chemistry and surface macromolecules. Environmental Science & Technology, 43(12), 4340–4347.

    Article  CAS  Google Scholar 

  • Kim, H. N., Hong, Y., Lee, I., Bradford, S. A., & Walker, S. L. (2009b). Surface characteristics and adhesion behavior of Escherichia coli O157:H7: role of extracellular macromolecules. Biomacromolecules, 10(9), 2556–2564.

    Article  CAS  Google Scholar 

  • Kurt, Z., Mack, E. E., & Spain, J. C. (2016). Natural attenuation of nonvolatile contaminants in the capillary fringe. Environmental Science & Technology, 50(18), 10172–10178.

    Article  CAS  Google Scholar 

  • Landkamer, L. L., Harvey, R. W., Scheibe, T. D., & Ryan, J. N. (2013). Colloid transport in saturated porous media: elimination of attachment efficiency in a new colloid transport model. Water Resources Research, 49(5), 2952–2965.

    Article  Google Scholar 

  • Li, X., Scheibe, T. D., & Johnson, W. P. (2004). Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon. Environmental Science & Technology, 38(21), 5616–5625.

    Article  CAS  Google Scholar 

  • Lien, P., Yang, Z., Chang, Y., Tu, Y., & Kao, C. (2016). Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: effectiveness and mechanism study. Chemical Engineering Journal, 289, 525–536.

    Article  CAS  Google Scholar 

  • Liu, L., Gao, B., Wu, L., Morales, V. L., Yang, L. Y., Zhou, Z. H., et al. (2013). Deposition and transport of graphene oxide in saturated and unsaturated porous media. Chemical Engineering Journal, 229, 444–449.

    Article  CAS  Google Scholar 

  • Marcus, I. M., Bolster, C. H., Cook, K. L., Opot, S. R., & Walker, S. L. (2012). Impact of growth conditions on transport behavior of E. coli. Journal of Environmental Monitoring, 14(3), 984–991.

    Article  CAS  Google Scholar 

  • Martin, J. W., Barri, T., Han, X., Fedorak, P. M., El-Din, M. G., Perez, L., et al. (2010). Ozonation of oil sands process-affected water accelerates microbial bioremediation. Environmental Science & Technology, 44(21), 8350–8356.

    Article  CAS  Google Scholar 

  • Martins, J. M. F., Majdalani, S., Vitorge, E., Desaunay, A., Navel, A., Guiné, V., et al. (2013). Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil. Environmental Science: Processes & Impacts, 15(2), 347–356. doi:10.1039/C2EM30586K.

    CAS  Google Scholar 

  • Meckenstock, R. U., Elsner, M., Griebler, C., Lueders, T., Stumpp, C., Aamand, J., et al. (2015). Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environmental Science & Technology, 49(12), 7073–7081.

    Article  CAS  Google Scholar 

  • Mitropoulou, P. N., Syngouna, V. I., & Chrysikopoulos, C. V. (2013). Transport of colloids in unsaturated packed columns: role of ionic strength and sand grain size. Chemical Engineering Journal, 232, 237–248.

    Article  CAS  Google Scholar 

  • Or, D., Smets, B. F., Wraith, J., Dechesne, A., & Friedman, S. (2007). Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Advances in Water Resources, 30(6), 1505–1527.

    Article  Google Scholar 

  • Paradelo, M., Pérez-Rodríguez, P., Fernández-Calviño, D., Arias-Estévez, M., & López-Periago, J. E. (2012). Coupled transport of humic acids and copper through saturated porous media. European Journal of Soil Science, 63(5), 708–716.

    Article  CAS  Google Scholar 

  • Park, J. A., Kang, J. K., & Kim, S. B. (2017). Comparative analysis of bacteriophages and bacteria removal in soils and pyrophyllite-amended soils: column experiments. Water, Air, & Soil Pollution, 228(3), 103. doi:10.1007/s11270-017-3288-6.

    Article  Google Scholar 

  • Pembrey, R. S., Marshall, K. C., & Schneider, R. P. (1999). Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Applied and Environmental Microbiology, 65(7), 2877–2894.

    CAS  Google Scholar 

  • Prabhu, Y., & Phale, P. S. (2003). Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied Microbiology and Biotechnology, 61(4), 342–351.

    Article  CAS  Google Scholar 

  • Redman, J. A., Walker, S. L., & Elimelech, M. (2004). Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environmental Science & Technology, 38(6), 1777–1785.

    Article  CAS  Google Scholar 

  • Sasidharan, S., Torkzaban, S., Bradford, S. A., Kookana, R., Page, D., & Cook, P. G. (2016). Transport and retention of bacteria and viruses in biochar-amended sand. Science of the Total Environment, 548, 100–109.

    Article  Google Scholar 

  • Schinner, T., Letzner, A., Liedtke, S., Castro, F. D., Eydelnant, I. A., & Tufenkji, N. (2010). Transport of selected bacterial pathogens in agricultural soil and quartz sand. Water Research, 44(4), 1182–1192.

    Article  CAS  Google Scholar 

  • Scow, K. M., & Hicks, K. A. (2005). Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology, 16(3), 246–253.

    Article  CAS  Google Scholar 

  • Shen, J., Chen, Y., Wu, S., Wu, H., Liu, X., Sun, X., et al. (2015). Enhanced pyridine biodegradation under anoxic condition: the key role of nitrate as the electron acceptor. Chemical Engineering Journal, 277, 140–149.

    Article  CAS  Google Scholar 

  • Simunek, J., Sejna, M., Saito, H., Sakai, M., & van Genuchten, M. T. (2013). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media—version 4.16. Department of Environmental Sciences, University of California Riverside, Riverside, CA.

  • Song, X., & Seagren, E. A. (2008). In situ bioremediation in heterogeneous porous media: dispersion-limited scenario. Environmental Science & Technology, 42(16), 6131–6140.

    Article  CAS  Google Scholar 

  • Stumpp, C., Lawrence, J. R., Hendry, M. J., & Maloszewski, P. (2011). Transport and bacterial interactions of three bacterial strains in saturated column experiments. Environmental Science & Technology, 45(6), 2116–2123.

    Article  CAS  Google Scholar 

  • Syngouna, V. I., & Chrysikopoulos, C. V. (2012). Transport of biocolloids in water saturated columns packed with sand: effect of grain size and pore water velocity. Journal of Contaminant Hydrology, 129-130, 11–24.

    Article  CAS  Google Scholar 

  • Tong, M., Long, G., Jiang, X., & Kim, H. N. (2010). Contribution of extracellular polymeric substances on representative gram negative and gram positive bacterial deposition in porous media. Environmental Science & Technology, 44(7), 2393–2399.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Tazehkand, S. S., Walker, S. L., & Bradford, S. A. (2008). Transport and fate of bacteria in porous media: coupled effects of chemical conditions and pore space geometry. Water Resources Research, 44(4). doi:10.1029/2007wr006541.

  • Tufenkji, N. (2007). Modeling microbial transport in porous media: traditional approaches and recent developments. Advances in Water Resources, 30(6–7), 1455–1469.

    Article  Google Scholar 

  • Walczak, J. J., Wang, L., Bardy, S. L., Feriancikova, L., Li, J., & Xu, S. (2012). The effects of starvation on the transport of Escherichia coli in saturated porous media are dependent on pH and ionic strength. Colloids Surfaces B: Biointerfaces, 90, 129–136.

    Article  CAS  Google Scholar 

  • Walshe, G. E., Pang, L., Flury, M., Close, M. E., & Flintoft, M. (2010). Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research, 44(4), 1255–1269.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Bradford, S. A., & Simunek, J. (2014a). Physicochemical factors influencing the preferential transport of Escherichia coli in soils. Vadose Zone Journal, 13(1). doi:10.2136/vzj2013.07.0120.

  • Wang, Y. S., Bradford, S. A., & Simunek, J. (2014b). Release of E.coli D21g with transients in water content. Environmental Science & Technology, 48(16), 9349–9357.

    Article  CAS  Google Scholar 

  • Wu, D., Tong, M., & Kim, H. (2016). Influence of perfluorooctanoic acid on the transport and deposition behaviors of bacteria in quartz sand. Environmental Science & Technology, 50(5), 2381–2388.

    Article  CAS  Google Scholar 

  • Xu, H., Wu, H., Qiu, Y., Shi, X., He, G., Zhang, J., et al. (2011). Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation, 22(2), 335–345.

    Article  CAS  Google Scholar 

  • Xu, H., Li, X., Sun, Y., Shi, X., & Wu, J. (2016). Biodegradation of pyrene by free and immobilized cells of Herbaspirillum chlorophenolicum strain FA1. Water, Air, & Soil Pollution, 227(4). doi:10.1007/s11270-016-2824-0.

  • Yadav, B. K., Ansari, F. A., Basu, S., & Mathur, A. (2014). Remediation of LNAPL contaminated groundwater using plant-assisted biostimulation and bioaugmentation methods. Water, Air, & Soil Pollution, 225(1), 1793. doi:10.1007/s11270-013-1793-9.

    Article  Google Scholar 

  • Yang, H., Kim, H., & Tong, M. (2012). Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids Surfaces B:Biointerfaces, 91, 122–129.

    Article  CAS  Google Scholar 

  • Yang, H., Ge, Z., Wu, D., Tong, M., & Ni, J. (2016). Cotransport of bacteria with hematite in porous media: effects of ion valence and humic acid. Water Research, 88, 586–594.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhu, D., Wang, H., Hou, L., & Chen, W. (2012). Humic acid-mediated transport of tetracycline and pyrene in saturated porous media. Environmental Toxicology and Chemistry, 31(3), 534–541.

    Article  CAS  Google Scholar 

  • Zhao, W., Walker, S. L., Huang, Q., & Cai, P. (2014). Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. Water Research, 53, 35–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Fund of China-Xinjiang Project (No. U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Xu or Jichun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, H., Gao, B. et al. Retention and Transport of PAH-Degrading Bacterium Herbaspirillum chlorophenolicum FA1 in Saturated Porous Media Under Various Physicochemical Conditions. Water Air Soil Pollut 228, 259 (2017). https://doi.org/10.1007/s11270-017-3441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3441-2

Keywords

Navigation