Skip to main content

Advertisement

Log in

Impact of the Linked Surface Water-Soil Water-Groundwater System on Transport of E. coli in the Subsurface

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Escherichia coli (E. coli) contamination of groundwater (GW) and surface water (SW) occurs significantly through the subsurface from onsite wastewater treatment systems (OWTSs). However, E. coli transport in the subsurface remains inadequately characterized at the field scale, especially within the vadose zone. Therefore, the aim of this research is to investigate the impact of groundwater fluctuations (e.g., recharging, discharging conditions) and variable conditions in the vadose zone (e.g., pulses of E. coli flux) by characterizing E. coli fate and transport in a linked surface water-soil water-groundwater system (SW-SoW-GW). In particular, this study characterizes the impact of flow regimes on E. coli transport in the subsurface and evaluates the sensitivity of parameters that control the transport of E. coli in the SW-SoW-GW system. This study was conducted in Lake Granbury, which is an important water supply in north-central Texas providing water for over 250,000 people. Results showed that there was less removal of E. coli during groundwater recharge events as compared to GW discharge events. Also, groundwater and surface water systems largely control E. coli transport in the subsurface; however, temporal variability of E. coli can be explained by linking the SW-SoW-GW system. Moreover, sensitivity analysis revealed that saturated water content of the soil, total retention rate coefficient, and hydraulic conductivity are important parameters for E. coli transport in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, J. M. (1991). The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications, 1, 326–347.

    Article  Google Scholar 

  • Anderson, M. P., & Munter, J. A. (1981). Seasonal reversals of groundwater flow around lakes and the relevance to stagnation points and lake budgets. Water Resources Research, 17, 1139.

    Article  Google Scholar 

  • Arora, B., Mohanty, B.P., and McGuire, J.T. (2012). Uncertainty in dual permeability model parameters for structured soils. Water Resources Research, 48.

  • Bergendahl, J., & Grasso, D. (2000). Prediction of colloid detachment in a model porous media: hydrodynamics. Chemical Engineering Science, 55(9), 1523–1532. Available at http://www.sciencedirect.com/science/article/pii/S0009250999004224 (verified 23 December 2014).

    Article  CAS  Google Scholar 

  • Bethune, D. N., Farvolden, R. N., Ryan, M. C., & Guzman, A. L. (1996). Industrial contamination of a municipal water-supply lake by induced reversal of ground-water flow, Managua, Nicaragua. Ground Water, 34, 699–708. Available at <Go to ISI>://WOS:A1996UV86600020.

    Article  CAS  Google Scholar 

  • Bhattacharjee, S., Ryan, J. N., & Elimelech, M. (2002). Virus transport in physically and geochemically heterogeneous subsurface porous media. Journal of Contaminant Hydrology, 57, 161–187.

    Article  CAS  Google Scholar 

  • Bouwer, H., Lange, J. C., & Riggs, M. S. (1974). High-rate land treatment I: infiltration and hydraulic aspects of the Flushing Meadows project. Journal of the Water Pollution Control Federation, 46, 834–843. Available at http://www.jstor.org/discover/10.2307/25038728?sid=21105777816983&uid=3739256&uid=4&uid=3739560&uid=2 (verified 3 February 2015).

    Google Scholar 

  • Bradford, S. A., & Bettahar, M. (2005). Straining, attachment, and detachment of oocysts in saturated porous media. Journal of Environmental Quality, 34(2), 469. Available at https://dl.sciencesocieties.org/publications/jeq/abstracts/34/2/0469 (verified 4 January 2015).

    Article  CAS  Google Scholar 

  • Bradford, S. A., Simunek, J., Bettahar, M., Van Genuchten, M. T., & Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 37, 2242–2250.

    Article  CAS  Google Scholar 

  • Bradford, S.A., Simunek, J., and Walker, S.L. (2006). Transport and straining of E. coli O157:H7 in saturated porous media. Water Resources Research, 42.

  • Butler, R. G., Orlob, G. T., & McGauhey, P. H. (1954). Underground movement of bacterial and chemical pollutants. Journal of American Water Works Association, 46, 97–111.

    CAS  Google Scholar 

  • Cunningham, A., Characklis, W.G., Abedeen, F., Crawford, D. (1991). Influence of biofilm accumulation on porous media hydrodynamics. Environmental Science & Technology, 25, 1305–1311. Available at http://pubs.acs.org/doi/abs/10.1021/es00019a013.

  • Davis, R. O. E., & Bennett, H. H. (1927). Grouping of soils on the basis of mechanical analysis. Washington: U.S. Department of Agriculture.

    Google Scholar 

  • DeFlaun, M. F., Murray, C. J., Holben, W., Scheibe, T., Mills, A., Ginn, T., Griffin, T., Majer, E., & Wilson, J. L. (1997). Preliminary observations on bacterial transport in a coastal plain aquifer. FEMS Microbiology Reviews, 20, 473–487.

    Article  CAS  Google Scholar 

  • Dwivedi, D., and Mohanty, B.P. (2016). Hot spots and persistence of nitrate in aquifers across scales. Entropy, 18(1).

  • Dwivedi, D., Mohanty, B.P., and Lesikar, B.J. (2008). E. coli fate and transport below subsurface septic tanks in Lake Granbury area. In ASA-CSSA-SSSA International Annual Meeting, Houston, TX, 5–9 Oct.

  • Dwivedi, D., Mohanty, B. P., & Lesikar, B. J. (2013). Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors. Water Resources Research, 49, 2896–2906.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Greenberg, A. E., & Franson, M. A. H. (1988). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Federle, T. W., Dobbins, D. C., Thorntonmanning, J. R., & Jones, D. D. (1986). Microbial biomass, activity, and community structure in subsurface soils. Ground Water, 24, 365–374.

    Article  CAS  Google Scholar 

  • Foppen, J. W. A., & Schijven, J. F. (2006). Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Research, 40(3), 401–426. Available at http://www.ncbi.nlm.nih.gov/pubmed/16434075 (verified 9 December 2014).

    Article  CAS  Google Scholar 

  • Foppen, J. W. A., Mporokoso, A., & Schijven, J. F. (2005). Determining straining of Escherichia coli from breakthrough curves. Journal of Contaminant Hydrology, 76(3–4), 191–210. Available at http://www.sciencedirect.com/science/article/pii/S0169772204001512 (verified 23 December 2014).

    Article  CAS  Google Scholar 

  • Foppen, J. W., van Herwerden, M., & Schijven, J. (2007). Measuring and modelling straining of Escherichia coli in saturated porous media. Journal of Contaminant Hydrology, 93, 236–254.

    Article  CAS  Google Scholar 

  • Gagliardi, J. V., & Karns, J. S. (2000). Leaching of Escherichia coli O157 :H7 in diverse soils under various agricultural management practices. Applied and Environmental Microbiology, 66, 877–883. Available at ISI:000085604800001.

    Article  CAS  Google Scholar 

  • Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28, 1955–1974.

    Article  CAS  Google Scholar 

  • Harmel, R. D., King, K. W., Richardson, C. W., & Williams, J. R. (2003). Long-term precipitation analyses for the central Texas Blackland Prairie. Transactions of ASAE, 46(5), 1381.

    Article  Google Scholar 

  • Harvey, R., & Garabedian, S. (1991). Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environmental Science & Technology, 25, 178–185. doi:10.1021/es00013a021.

    Article  CAS  Google Scholar 

  • Haznedaroglu, B. Z., Bolster, C. H., & Walker, S. L. (2008). The role of starvation on Escherichia coli adhesion and transport in saturated porous media. Water Research, 42, 1547–1554.

    Article  CAS  Google Scholar 

  • Hendry, M. J., Lawrence, J. R., & Maloszewski, P. (1999). Effects of velocity on the transport of two bacteria through saturated sand. Ground Water, 37, 103–112. Available at <Go to ISI>://000078117900017.

    Article  CAS  Google Scholar 

  • Jamieson, R. C., Gordon, R. J., Tattrie, S. C., & Stratton, G. W. (2003). Sources and persistence of fecal coliform bacteria in a rural watershed. Water Quality Research Journal of Canada, 38, 33–47.

    CAS  Google Scholar 

  • Jiang, G., Noonan, M. J., Buchan, G. D., & Smith, N. (2007). Transport of Escherichia coli through variably saturated sand columns and modeling approaches. Journal of Contaminant Hydrology, 93, 2–20.

    Article  CAS  Google Scholar 

  • Johnson, P. R., & Elimelech, M. (1995). Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir, 11, 801–812. doi:10.1021/la00003a023.

    Article  CAS  Google Scholar 

  • Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity. Laboratory methods. p. 687–734. In Methods of soil analysis—part 1. Physical and mineralogical methods.

  • Lesikar, B., Hallmark, C., Melton, R., & Harris, B. (2005). On-site wastewater treatment systems: soil particle analysis procedure. Texas Cooperative Extension, Texas A&M University System (p. 21).

  • Lindqvist, R., & Bengtsson, G. (1991). Dispersal dynamics of groundwater bacteria. Microbial Ecology, 21, 49–72.

    Article  CAS  Google Scholar 

  • Lindqvist, R., Cho, J. S., & Enfield, C. G. (1994). A kinetic model for cell density dependent bacterial transport in porous media. Water Resources Research, 30, 3291–3299. Available at <Go to ISI>://WOS:A1994PU14200007.

    Article  Google Scholar 

  • Logan, B. E., Jewett, D. G., Arnold, R. G., Bouwer, E. J., & O’Melia, C. R. (1995). Clarification of clean-bed filtration models. Journal of Environmental Engineering, 121(12), 869–873. doi:10.1061/(ASCE)0733-9372(1995)121:12(869 (verified 4 January 2015).

    Article  CAS  Google Scholar 

  • Long, T., & Or, D. (2007). Microbial growth on partially saturated rough surfaces: simulations in idealized roughness networks. Water Resources Research, 43.

  • Lowe, K. S., & Siegrist, R. L. (2008). Controlled field experiment for performance evaluation of septic tank effluent treatment during soil infiltration. Journal of Environmental Engineering, 134, 93–101.

    Article  CAS  Google Scholar 

  • Mace, R.E., C.A. H., A. R., and Way, S. C. (2000). Groundwater availability of the Trinity Aquifer, Hill Country Area, Texas—numerical simulations through 2050.

  • Mallants, D., Mohanty, B. P., Vervoort, A., & Feyen, J. (1997). Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology, 10, 115–131.

    Article  Google Scholar 

  • Matthess, G., Pekdeger, A., & Schroeter, J. (1988). Persistence and transport of bacteria and viruses in groundwater—a conceptual evaluation. Journal of Contaminant Hydrology, 2(2), 171–188. Available at http://www.sciencedirect.com/science/article/pii/016977228890006X (verified 3 January 2015).

    Article  CAS  Google Scholar 

  • McCaulou, D. R., Bales, R. C., & Arnold, R. G. (1995). Effect of temperature-controlled motility on transport of bacteria and microspheres through saturated sediment. Water Resources Research, 31, 271.

    Article  Google Scholar 

  • McMahon, P. B., Tindall, J. A., Collins, J. A., Lull, K. J., & Nuttle, J. R. (1995). Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river. Water Resources Research, 31, 2561–2569.

    Article  CAS  Google Scholar 

  • Milford, M. H. (1997). Introduction to soils and soil science laboratory exercises. Dubuque: Kendall/Hunt Publishing Company.

    Google Scholar 

  • Murphy, E. M., & Ginn, T. R. (2000). Modeling microbial processes in porous media. Hydrogeology Journal, 8, 142–158.

    Article  Google Scholar 

  • Or, D., Smets, B. F., Wraith, J. M., Dechesne, A., & Friedman, S. P. (2007). Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Advances in Water Resources, 30, 1505–1527.

    Article  Google Scholar 

  • Pachepsky, Y. A., & Shelton, D. R. (2011). Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Critical Reviews in Environmental Science and Technology, 41, 1067–1110.

    Article  CAS  Google Scholar 

  • Pachepsky, Y. A., Sadeghi, A. M., Bradford, S. A., Shelton, D. R., Guber, A. K., & Dao, T. (2006). Transport and fate of manure-borne pathogens: modeling perspective. Agricultural Water Management, 86, 81–92.

    Article  Google Scholar 

  • Pang, L., Close, M., Goltz, M., Sinton, L., Davies, H., Hall, C., & Stanton, G. (2004). Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages. Environment International, 29, 907–921.

    Article  CAS  Google Scholar 

  • Pang, L., Nokes, C., Šimůnek, J., Kikkert, H., & Hector, R. (2006). Modeling the impact of clustered septic tank systems on groundwater quality. Vadose Zone Journal, 5, 599.

    Article  CAS  Google Scholar 

  • Personne, J. C., Poty, F., Vaute, L., & Drogue, C. (1998). Survival, transport and dissemination of Escherichia coli and enterococcci in a fissured environment. Study of a flood in a karstic aquifer. Journal of Applied Microbiology, 84(3), 431–438. doi:10.1046/j.1365-2672.1998.00366.x (verified 14 January 2015).

    Article  CAS  Google Scholar 

  • Powelson, D. K., & Mills, A. L. (2001). Transport of in sand columns with constant and changing water contents. Journal of Environmental Quality, 30(1), 238. Available at https://dl.sciencesocieties.org/publications/jeq/abstracts/30/1/238 (verified 14 January 2015).

    Article  CAS  Google Scholar 

  • Riebschleager, K. J., Karthikeyan, R., Srinivasan, R., & McKee, K. (2012). Estimating potential E. coli sources in a watershed using spatially explicit modeling techniques. JAWRA Journal of the American Water Resources Association, 48(4), 745–761. doi:10.1111/j.1752-1688.2012.00649.x (verified 2 December 2014).

    Article  Google Scholar 

  • Ryan, J. N., & Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107(95), 1–56. Available at http://linkinghub.elsevier.com/retrieve/pii/092777579503384X.

    Article  CAS  Google Scholar 

  • Saiers, J.E. (2005). Correction to “Ionic-strength effects on colloid transport and interfacial reactions in partially saturated porous media.” Water Resources Research, 41.

  • Šimůnek, J., van Genuchten, M. Th., & Šejna, M. (2006). The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media (version 1.0, edited, PC Progress, Prague, Czech Republic.).

  • Sinton, L. W., Finlay, R. K., Pang, L., & Scott, D. M. (1997). Transport of bacteria and bacteriophages in irrigated effluent into and through an alluvial gravel aquifer. Water, Air, and Soil Pollution, 98(1-2), 17–42. doi:10.1023/A%3A1026492110757 (verified 12 December 2014).

    Article  CAS  Google Scholar 

  • Sinton, L. W., Noonan, M. J., Finlay, R. K., Pang, L., & Close, M. E. (2000). Transport and attenuation of bacteria and bacteriophages in an alluvial gravel aquifer. New Zealand Journal of Marine and Freshwater Research, 34(1), 175–186. doi:10.1080/00288330.2000.9516924 (verified 12 December 2014).

    Article  Google Scholar 

  • Smith, M. S., Thomas, G. W., White, R. E., & Ritonga, D. (1985). Transport of Escherichia coli through intact and disturbed soil columns. Journal of Environmental Quality, 14, 87.

    Article  Google Scholar 

  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—a review. Journal of Environmental Quality, 22, 392.

    Article  CAS  Google Scholar 

  • Sun, N., Elimelech, M., Sun, N. Z., & Ryan, J. N. (2001). A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. Journal of Contaminant Hydrology, 49, 173–199.

    Article  CAS  Google Scholar 

  • Tan, Y., Gannon, J. T., Baveye, P., & Alexander, M. (1994). Transport of bacteria in an aquifer sand: experiments and model simulations. Water Resources Research, 30, 3243.

    Article  Google Scholar 

  • Tong, M., Camesano, T. A., & Johnson, W. P. (2005). Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand. Environmental Science & Technology, 39, 3679–3687.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Hassanizadeh, S. M., Schijven, J. F., de Bruin, H. A. M., & de Roda Husman, A. M. (2006). Virus transport in saturated and unsaturated sand columns. Vadose Zone Journal, 5(3), 877. Available at https://www.soils.org/publications/vzj/abstracts/5/3/877?access=0&view=pdf (verified 13 December 2014).

    Article  Google Scholar 

  • Tufenkji, N. (2007). Modeling microbial transport in porous media: traditional approaches and recent developments. Advances in Water Resources, 30, 1455–1469.

    Article  Google Scholar 

  • Tufenkji, N., Miller, G. F., Ryan, J. N., Harvey, R. W., & Elimelech, M. (2004). Transport of cryptosporidium oocysts in porous media role of straining and physicochemical. Environmental Science & Technology, 38(22), 5932–5938.

    Article  CAS  Google Scholar 

  • Twarakavi, N. K. C., Šimůnek, J., & Seo, S. (2008). Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone Journal, 7, 757.

    Article  Google Scholar 

  • Twarakavi, N.K.C., Šimůnek, J., and Schaap, M.G. (2010). Can texture-based classification optimally classify soils with respect to soil hydraulics? Water Resources Research, 46.

  • USEPA. (2002). Onsite wastewater treatment systems manual. EPA/625/R–00/008.

  • USEPA. (2005). http://www.epa.gov/owm/septic/pubs/onsite_handbook.pdf.

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892.

    Article  Google Scholar 

  • Wan, J., & Wilson, J. L. (1994). Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media. Water Resources Research, 30, 11.

    Article  CAS  Google Scholar 

  • Williams, A. E., Johnson, J. A., Lund, L. J., & Kabala, Z. J. (1998). Spatial and temporal variations in nitrate contamination of a rural aquifer, California. Journal of Environmental Quality, 27, 1147.

    Article  CAS  Google Scholar 

  • Zhang, P., Johnson, W. P., Scheibe, T. D., Choi, K. H., Dobbs, F. C., & Mailloux, B. J. (2001). Extended tailing of bacteria following breakthrough at the Narrow Channel focus area, Oyster, Virginia. Water Resources Research, 37, 2687–2698.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by EPA 319(h) grant for TMDL in Texas streams and partly supported by the National Institute of Environmental Health Sciences (grant 5R01ES015634), Texas Water Resources Institute, and Texas A&M support a/c 02-130003. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, D., Mohanty, B.P. & Lesikar, B.J. Impact of the Linked Surface Water-Soil Water-Groundwater System on Transport of E. coli in the Subsurface. Water Air Soil Pollut 227, 351 (2016). https://doi.org/10.1007/s11270-016-3053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3053-2

Keywords

Navigation