Skip to main content
Log in

Effect of Nitrite on the Formation of Trichloronitromethane (TCNM) During Chlorination of Polyhydroxy-Phenols and Sugars

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Occurrence of halonitromethanes (HNMs) in drinking water has been a concern recently due to the potentially high human health risks of HNMs. Mechanisms of formation of HNMs during disinfection has remained controversial. The objective of this study was to investigate the effects of nitrite on the formation of trichloronitromethane (TCNM), a dominant HNM species occurring in chlorinated water. Polyhydroxy-phenols (hydroquinone, catechol, resorcinol, and phloroglucinol) and sugars (glucose, maltose, and lactose) were compared as surrogates/model compounds of common organic precursors of humic and non-humic substances in natural organic matter, respectively. The results showed that TCNM was not detectable after chlorinated sugars with the addition of nitrite. Upon chlorinating the polyhydroxy-phenols, TCNM formation varied greatly among different compounds, i.e., resorcinol > phloroglucinol > catechol >> hydroquinone. The results demonstrated that TCNM formation in the presence of nitrite was a function of aromaticity as well as the position and number of hydroxyl groups on the benzene rings of a compound, and the TCNM formation potential of humic substances was greater than that of non-humic substances. For catechol, resorcinol, and phloroglucinol, TCNM formation varied greatly with pH but generally remained stable with the increase of reaction time and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Blatchley, E. R., Margetas, D., & Duggirala, R. (2003). Copper catalysis in chloroform formation during water chlorination. Water Research, 37(18), 4385–4394. doi:10.1016/S0043-1354(03)00404-4.

  • Bond, T., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2012). A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 1(1), 93–113. doi:10.1080/09593330.2012.705895.

    Article  CAS  Google Scholar 

  • Bougeard, C. M., Goslan, E. H., Jefferson, B., & Parsons, S. A. (2010). Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Research, 44(3), 729–740. doi:10.1016/j.watres.2009.10.008.

    Article  CAS  Google Scholar 

  • Cardador, M. J., Serrano, A., & Gallego, M. (2008). Simultaneous liquid-liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography. Journal of Chromatography. A, 1209(1–2), 61–69. doi:10.1016/j.chroma.2008.09.033.

    Article  CAS  Google Scholar 

  • Chen, M., & Xu, A. L. (2011). Investigation of centralized source and drinking water quality for Yangtze Estuary in Nantong Area. The Administration and Technique of Environmental Mmonitoring, 23, 32–35 (in Chinese).

    CAS  Google Scholar 

  • Chiang, P. C., Chang, E. E., Chuang, C. C., Liang, C. H., & Huang, C. P. (2010). Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination. Chemosphere, 80(3), 327–333. doi:10.1016/j.chemosphere.2010.03.053.

    Article  CAS  Google Scholar 

  • Chuang, Y. H., & Tung, H. H. (2015). Formation of trichloronitromethane and dichloroacetonitrile in natural waters: precursor characterization, kinetics and interpretation. Journal of Hazardous Materials, 283, 218–226. doi:10.1016/j.jhazmat.2014.09.026.

    Article  CAS  Google Scholar 

  • Fang, J. Y., Ma, J., Yang, X., & Shang, C. (2010). Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Research, 44(6), 1934–1940. doi:10.1016/j.watres.2009.11.046.

  • Farre, M. J., Day, S., Neale, P. A., Stalter, D., Tang, J. Y., & Escher, B. I. (2013). Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter. Water Research, 47(14), 5409–5421. doi:10.1016/j.watres.2013.06.017.

    Article  CAS  Google Scholar 

  • Gallard, H., & Gunten, U. V. (2002). Chlorination of phenols: kinetics and formation of chloroform. Environmental Science & Technology, 36(5), 884–890. doi:10.1021/es010076a.

    Article  CAS  Google Scholar 

  • Gan, W. H., Sharma, V. K., Zhang, X., Yang, L., & Yang, X. (2015). Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. Journal of Hazardous Materials, 292, 197–204. doi:10.1016/j.jhazmat.2015.02.037.

  • Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., & Iulian Olariu, R. (2005). Nitrated phenols in the atmosphere: a review. Atmospheric Environment, 39(2), 231–248. doi:10.1016/j.atmosenv.2004.09.044.

    Article  CAS  Google Scholar 

  • Hong, H. C., Xiong, Y. J., Ruan, M. Y., Liao, F. L., Lin, H. J., & Liang, Y. (2013). Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine. Science of the Total Environment, 444, 196–204. doi:10.1016/j.scitotenv.2012.11.086.

  • Hong, H. C., Qian, L. Y., Xiao, Z. Q., Zhang, J. Q., Chen, J. R., Lin, H. J., Yu, H. Y., Shen, L. G., & Liang, Y. (2015a). Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin. Journal of Hydrology, 531, 802–809. doi:10.1016/j.jhydrol.2015.10.046.

  • Hong, H. C., Qian, L. Y., Xiong, Y. J., Xiao, Z. Q., Lin, H. Y., & Yu, H. Y. (2015b). Use of multiple regression models to evaluate the formation of halonitromethane via chlorination/chloramination of water from Tai Lake and the Qiantang River, China. Chemosphere, 119, 540–546. doi:10.1016/j.chemosphere.2014.06.084.

  • Hu, J., Song, H., Addison, J. W., & Karanfil, T. (2010a). Halonitromethane formation potentials in drinking waters. Water Research, 44(1), 105–114. doi:10.1016/j.watres.2009.09.006.

    Article  CAS  Google Scholar 

  • Hu, J., Song, H., & Karanfil, T. (2010b). Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite. Environmental Science and Technology, 44(2), 794–799. doi:10.1021/es902630u.

    Article  CAS  Google Scholar 

  • Huang, F. Q., Ruan, M. Y., Yan, J. D., Hong, H. C., Lin, H. J., & Xiong, Y. J. (2013). An improved method for determining HNMs in drinking water. Water Science & Technology: Water Supply, 13(5), 1257–1264. doi:10.2166/ws.2013.135.

    CAS  Google Scholar 

  • Jia, A., Wu, C., & Duan, Y. (2016). Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water. Journal of Hazardous Materials, 308, 411–418. doi:10.1016/j.jhazmat.2016.01.037.

    Article  CAS  Google Scholar 

  • Kanan, A., Selbes, M., & Karanfil, T. (2015). Occurrence and formation of disinfection by-products in indoor U.S. swimming pools. American Chemical Society, 1190, 405–430. doi:10.1021/bk-2015-1190.ch021.

    CAS  Google Scholar 

  • Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S., Chinn, R., Sclimenti, M. J., Onstad, G. D., & Thruston, A. D. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science and Technology, 40(23), 7175–7185. doi:10.1021/es060353j.

    Article  CAS  Google Scholar 

  • Lee, W., Westerhoff, P., & Croue, J. (2007). Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane. Environmental Science and Technology, 41(15), 5485–5490. doi:10.1021/es070411g.

    Article  CAS  Google Scholar 

  • Li, C. M., Wang, D. H., Xu, X., & Wang, Z. J. (2017). Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation. Science of The Total Environment, 588, 177–184. doi:10.1016/j.scitotenv.2017.02.108.

  • Liviac, D., Creus, A., & Marcos, R. (2009). Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro. Environmental Research, 109(3), 232–238. doi:10.1016/j.envres.2008.12.009.

    Article  CAS  Google Scholar 

  • Ma, W. Y. (2011). Organic Chemistry. Wuhan: Huazhong University of Science and Technology Press, 2, 73 (in Chinese).

    Google Scholar 

  • Machado, F., & Boule, P. (1995). Photonitration and photonitrosation of phenolic derivatives induced in aqueous solution by excitation of nitrite and nitrate ions. Journal of Photochemistry and Photobiology A: Chemistry, 86(1), 73–80. doi:10.1016/1010-6030(94)03946-R.

    Article  CAS  Google Scholar 

  • Montesinos, I., & Gallego, M. (2012). Solvent-minimized extraction for determining halonitromethanes and trihalomethanes in water. Journal of Chromatography. A, 1248, 1–8. doi:10.1016/j.chroma.2012.05.067.

    Article  CAS  Google Scholar 

  • Montesinos, I., & Gallego, M. (2013). Speciation of common volatile halogenated disinfection by-products in tap water under different oxidising agents. Journal of Chromatography. A, 1310, 113–120. doi:10.1016/j.chroma.2013.08.036.

    Article  CAS  Google Scholar 

  • Norwood, D. L., Johnson, J. D., & Christman, R. F. (1980). Reactions of chlorine with selected aromatic models of aquatic humic material. Environmental Science and Technology, 14(2), 478–482. doi:10.1021/es60162a012.

    Article  Google Scholar 

  • Qian, L.Y. (2015) The study of nitrogen disinfection by-products HNMs formation characteristic. Sc.M. Dissertation of Zhejiang Normal University (in Chinese).

  • Qin, F., Zhao, Y. Y., Zhao, Y., Boyd, J. M., Zhou, W., & Li, X. F. (2010). A toxic disinfection by-product, 2,6-dichloro-1,4-benzoquinone, identified in drinking water. Angewandte Chemie International Edition, 49(4), 790–792. doi:10.1002/anie.200904934.

    Article  CAS  Google Scholar 

  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 636(1–3), 178–242. doi:10.1016/j.mrrev.2007.09.001.

    Article  CAS  Google Scholar 

  • Rook, J. J. (1977). Chlorination reactions of fulvic acids in natural waters. Environmental Science and Technology, 11(5), 478–482. doi:10.1021/es60128a014.

    Article  CAS  Google Scholar 

  • Sadiq, R., & Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ, 321(1–3), 21–46. doi:10.1016/j.scitotenv.2003.05.001.

    Article  CAS  Google Scholar 

  • Schmitt, R. J., Ross, D. S., Hardee, J. R., & Wolfe, J. F. (1988). Synthesis of 4,6-dinitroresorcinol. Journal of Organic Chemistry, 53(23), 5568–5569. doi:10.1021/jo00258a039.

    Article  CAS  Google Scholar 

  • Shah, A. D., & Mitch, W. A. (2012). Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environmental Science & Technology, 46(1), 119–131. doi:10.1021/es203312s.

    Article  CAS  Google Scholar 

  • Shan, J., Hu, J., Kaplan-Bekaroglu, S. S., Song, H., & Karanfil, T. (2012). The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars. Chemosphere, 86(4), 323–328. doi:10.1016/j.chemosphere.2011.09.004.

    Article  CAS  Google Scholar 

  • Shukla, P. K., & Mishra, P. C. (2008). Reactions of NO2Cl with imidazole: a model study for the corresponding reactions of guanine. The Journal of Physical Chemistry B, 26, 7925–7936. doi:10.1021/jp801093r.

    Article  Google Scholar 

  • Song, H., Addison, J. W., Hu, J., & Karanfil, T. (2010). Halonitromethanes formation in wastewater treatment plant effluents. Chemosphere, 79(2), 174–179. doi:10.1016/j.chemosphere.2010.01.001.

    Article  CAS  Google Scholar 

  • Sun, L., Yang, T. J., Liao, Y. H., Zhong, Y., Li, S. D., & Huang, R. M. (2006). The principle source of water pollutants in Guangzhou. Journal of Tropical Medicine, 6, 593–595 (in Chinese).

    CAS  Google Scholar 

  • Thibaud, H., Laat, J. D., Merlet, N., & Dore, M. (1987). Formation de chloropicrine en milieu aqueux: influence des nitrites sur la formation de precurseurs paroxydation de composes organiques. Water Research, 21(7), 813–821. doi:10.1016/0043-1354(87)90157-6.

    Article  CAS  Google Scholar 

  • Vione, D., Maurino, V., Minero, C., & Pelizzetti, E. (2005). Reactions induced in natural waters by irradiation of nitrate and nitrite ions. The Handbook of Environmental Chemistry, 2M, 221–253. doi:10.1007/b138185.

    Google Scholar 

  • Wang, F. Y., Ruan, M. Y., Lin, H. J., Zhang, Y., Hong, H. C., & Zhou, X. Y. (2014). Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water. Science of Total Environment, 475, 23–28. doi:10.1016/j.scitotenv.2013.12.094.

  • Xiong, Y. J., Hong, H. C., Zhou, X. L., Ruan, M. Y., Xiao, Z. Q., & Li, M. H. (2014). Effects of nitrite on the formation of trichloronitromethane during chlorination/chloramination—take tryptophan as an example. Acta Scientiae Circumstantiae, 34(10), 2514–2519. doi:10.13671/j.hjkxxb.2014.0670.

    CAS  Google Scholar 

  • Xu, B., Tian, F. X., Hu, C. Y., Lin, Y. L., Xia, S. J., Rong, R., & Li, D. P. (2011). Chlorination of chlortoluron: kinetics, pathways and chloroform formation. Chemosphere, 83(7), 909–916. doi:10.1016/j.chemosphere.2011.02.050.

    Article  CAS  Google Scholar 

  • Yang, M.T. and Zhang, X.R. (2013) Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environmental Science & Technology 47(19), 10868–10876. dio: 10.1021/es401841t.

  • Yang, X., Shang, C., Shen, Q., Chen, B., Westerhoff, P., Peng, J., & Guo, W. (2012). Nitrogen origins and the role of ozonation in the formation of haloacetonitriles and halonitromethanes in chlorine water treatment. Environmental Science & Technology, 46(23), 12832–12838. doi:10.1021/es302993u.

    Article  CAS  Google Scholar 

  • Yang, X., Gan, W., Zhang, X., Huang, H., & Sharma, V. K. (2015). Effect of pH on the formation of disinfection byproducts in ferrate(VI) pre-oxidation and subsequent chlorination. Separation and Purification Technology, 156, 980–986. doi:10.1016/j.seppur.2015.09.057.

    Article  CAS  Google Scholar 

  • Zhang, T. Y., Xu, B., Hu, C. Y., Li, M., Xia, S. J., Tian, F. X., & Gao, N. Y. (2013). Degradation kinetics and chloropicrin formation during aqueous chlorination of dinoseb. Chemosphere, 93(11), 2662–2668. doi:10.1016/j.chemosphere.2013.08.035.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 41373141, 21107099), One Hundred Talents Program, Chinese Academy of Sciences (No. 63), Foundation from Guangdong Science and Technology Department (No. 20130320c), Shenzhen Science, Technology and Innovation Commission (No. JCYJ20140417113430546), Talent Plan for High-Level Foreign Experts funded by China Bureau of Foreign Experts Affairs (No. 49.1000) and CAS Adjunct Professorship (No. 2013T1G0038) and Special Foundation for provincial scientific research institutions provided by the Science and Technology Department of Zhejiang Province (grant no. 2015F50014), which the authors highly appreciate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huachang Hong or Yan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, G., Qiu, L., Wu, H. et al. Effect of Nitrite on the Formation of Trichloronitromethane (TCNM) During Chlorination of Polyhydroxy-Phenols and Sugars. Water Air Soil Pollut 228, 208 (2017). https://doi.org/10.1007/s11270-017-3382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3382-9

Keywords

Navigation