Skip to main content
Log in

Effects of Endosulfan on the Populations of Cultivable Microorganisms and the Diversity of Bacterial Community Structure in Brunisolic Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Endosulfan, an organochlorine pesticide, has been applied ubiquitously worldwide. However, endosulfan has been identified as a type of persistent organic pollutants (POPs), and its ecotoxicity has drawn attentions from scientists. The present study was implemented to examine the effects of endosulfan on the diversity and structure of soil microorganism communities. A control treatment and three concentrations (0.1, 1.0, and 10.0 mg/kg) were set up in laboratory experiments and sampled on days 7, 14, 21, and 28. The results revealed that the populations of bacteria and actinomycetes decreased significantly after 1.0 and 10.0 mg/kg treatments and that the soil microbial biomass carbon (MBC) was increased by endosulfan compared with the control. Terminal restriction fragment length polymorphism (T-RFLP) results revealed that the soil bacterial diversity was decreased by endosulfan and that the soil microbial community structure became unstable after endosulfan application. Moreover, the results of a 16S rRNA clone library revealed that the phyla Proteobacteria, Actinobacteria, Bacteroidetes, Spirochaetes, and Firmicutes showed an obvious advantage and closely relative. In conclusion, the results of the present study indicated that 0.1–10.0 mg/kg endosulfan showed obvious influences on the diversity and structure of the soil microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagot, N., Nybroe, O., Nielsen, P., & Johnsen, K. (2001). An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media. Applied and Environmental Microbiology, 67, 5233–5239.

    Article  CAS  Google Scholar 

  • Ackerman, L. K., Schwindt, A. R., Simonich, S. L. M., Koch, D. C., Blett, T. F., Schreck, C. B., Kent, M. L., & Landers, D. H. (2008). Atmospherically deposited PBDEs, pesticides, PCBs, and PAHs in western U.S. National Park fish: concentrations and consumption guidelines. Environmental Science & Technology, 42, 2334–2341.

    Article  CAS  Google Scholar 

  • Anderson J.M., Ingram J.S.I. (1993). Tropical soil biology and fertility: a handbook of methods. In (ed) CAB International, Oxfrdshire, Wallingford, UK.

  • Bacchetta, C., Cazenave, J., & Darma, M. J. (2011). Responses of biochemical markers in the fish Prochilodus lineatus exposed to a commercial formulation of endosulfan. Water, Air, and Soil Pollution, 216, 39–49.

    Article  CAS  Google Scholar 

  • Baćmaga, M., Borowik, A., Kucharski, J., Tomkiel, M., & Wyszkowska, J. (2014). Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environmental Science and Pollution Research, 22, 643–656.

    Article  Google Scholar 

  • Bajaj, A., Pathak, A., Mudiam, M. R., Mayilraj, S., & Manickam, N. (2010). Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading alpha-endosulfan and endosulfan sulfate. Journal of Applied Microbiology, 109, 2135–2143.

    Article  CAS  Google Scholar 

  • Bello, D., Trasar-Cepeda, C., Leiros, M. C., & Gil-Sotres, F. (2008). Evaluation of various tests for the diagnosis of soil contamination by 2,4,5-trichlorophenol (2,4,5-TCP). Environmental Pollution, 156, 611–617.

    Article  CAS  Google Scholar 

  • Black, C. A., Evans, D. D., & Dinauer, R. C. (1965). Methods of soil analysis. Madison, WI: American Society Agronomy, 9, 653–708.

    Google Scholar 

  • Brookes, P. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  CAS  Google Scholar 

  • Chakrabarty, S., Rajakumar, A., Raghuveer, K., Sridevi, P., Mohanachary, A., Prathibha, Y., Bashyam, L., Dutta-Gupta, A., & Senthilkumaran, B. (2012). Endosulfan and flutamide, alone and in combination, target ovarian growth in juvenile catfish, Clarias batrachus. Comparative biochemistry and physiology. Toxicology & Pharmacology: CBP, 155, 491–497.

    CAS  Google Scholar 

  • Chen, M. J., Shih, K., Hu, M., Li, F. B., Liu, C. S., Wu, W. J., & Tong, H. (2012). Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. Journal of Agricultural and Food Chemistry, 60, 2967–2975.

    Article  CAS  Google Scholar 

  • Davis, K. E., Joseph, S. J., & Janssen, P. H. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied and Environmental Microbiology, 71, 826–834.

    Article  CAS  Google Scholar 

  • Defo, M. A., Njine, T., Nola, M., & Beboua, F. S. (2011). Microcosm study of the long term effect of endosulfan on enzyme and microbial activities on two agrigultural soils of Yaounde-Cameroon. African Journal of Agricultural Research, 6(9), 2039–2050.

    Google Scholar 

  • Dong, M., Zhu, L. S., Shao, B., Zhu, S. Y., Wang, J., Xie, H., Wang, J. H., & Wang, F. H. (2013). The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers. Ecotoxicology and Environmental Safety, 92, 1–9.

    Article  CAS  Google Scholar 

  • Douthwaite, R. J. (1982). Changes in pied kingfisher (Ceryle rudis) feeding related to endosulfan pollution from tsetse fly control operations in the Okavang Delta, Botswana. Journal of Applied Ecology, 19, 133–141.

    Article  CAS  Google Scholar 

  • Epelde, L., Becerril, J. M., Kowalchuk, G. A., Deng, Y., Zhou, J., & Garbisu, C. (2010). Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Applied and Environmental Microbiology, 76, 7843–7853.

    Article  CAS  Google Scholar 

  • Franco-Andreu, L., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2016). Behavior of two pesticides in a soil subjected to severe drought. Effects on soil biology. Applied Soil Ecology, 105, 17–24.

    Article  Google Scholar 

  • Goswami, M. R., Pati, U. K., Chodhry, A., & Mukhopadhyay, A. (2013). Studies on the effect of cypermethrin on soil microbial biomass and its activity in an allunial soil. International Journal of Agricultural and Food Science, 3(1), 1–9.

    Google Scholar 

  • He, J. Z., Xu, Z. H., & Hughes, J. (2006). Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiology Ecology, 55, 38–47.

    Article  CAS  Google Scholar 

  • Horswell, J., Prosser, J. A., Siggins, A., Van Schaik, A., Ying, L., Ross, C., McGill, A., & Northcott, G. (2014). Assessing the impacts of chemical cocktails on the soil ecosystem. Soil Biology and Biochemistry, 75, 64–72.

    Article  CAS  Google Scholar 

  • Hose, G. C., Lim, R. P., & Hyne, R. V. (2003). The transport, fate and effects of endosulfan in the Australian freshwater environment. Australasian Journal of Ecotoxicology, 9, 101–111.

    CAS  Google Scholar 

  • Jia, H. L., Li, Y. F., Wang, D. G., Cai, D. J., Yang, M., Ma, J. M., & Hu, J. X. (2009a). Endosulfan in China 1-gridded usage inventories. Environmental Science and Pollution Research, 16, 295–301.

    Article  CAS  Google Scholar 

  • Jia, H. L., Sun, Y. Q., Li, Y. F., Tian, C. G., Wang, D. G., Yang, M., Ding, Y. S., & Ma, J. M. (2009b). Endosulfan in China 2-emissions and residues. Environmental Science and Pollution Research, 16, 302–311.

    Article  CAS  Google Scholar 

  • Johnsen, K., Jacobsen, C. S., Torsvik, V., & Sorensen, J. (2001). Pesticide effects on bacterial diversity in agricultural soils- a review. Biology and Fertility of Soils, 33, 443–453.

    Article  CAS  Google Scholar 

  • Kadian, N., Malik, A., Satya, S., & Dureja, P. (2012). Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil. Journal of Environmental Management, 95, S199–S202.

    Article  CAS  Google Scholar 

  • Kalyani, S. S., Sharma, J., Dureja, P., & Singh, S. (2010). Influence of endosulfan on microbial biomass and soil enzymatic activities of a tropical alfisol. Bulletin of Environmental Contamination and Toxicology, 84, 351–356.

    Article  Google Scholar 

  • Kaur, I., Mathur, R. P., Tandon, S. N., & Dureja, P. (1998). Persistence of ednsoulfan (technical) in water and soil. Environmental Technology, 19, 115–119.

    Article  CAS  Google Scholar 

  • Khan, S., Hesham, A. L., Qiao, M., Rehman, S., & He, J. Z. (2010). Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 17, 288–296.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., Dittel, A. I., Findlay, S. E. G., & Fischer, D. (2004). Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology, 35, 243–257.

    Article  Google Scholar 

  • Kong, L. F., Zhu, S. Y., Zhu, L. S., Xie, H., Su, K. C., Yan, T. X., Wang, J., Wang, J. H., Wang, F. H., & Sun, F. X. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Sciences, 25, 2257–2264.

    Article  CAS  Google Scholar 

  • Kwon, G. S., Sohn, H. Y., Shin, K. S., Kim, E., & Seo, B. I. (2005). Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Applied Microbial Biotechnology, 67, 845–850.

    Article  CAS  Google Scholar 

  • Leonard, A. W., Hyne, R. V., Lim, R. P., Leigh, K. A., Le, J., & Beckett, R. (2001). Fate and toxicity of endosulfan in the Nmoi River water and bottom sediment. Journal of Environmental Quality, 30, 750–759.

    Article  CAS  Google Scholar 

  • Liu, W., Zhu, L. S., Wang, J., Wang, J. H., Xie, H., & Song, Y. (2009). Assessment of the genotoxicity of endosulfan in earthworm and white clover plants using the comet assay. Archives of Environmental Contamination and Toxicology, 56, 742–746.

    Article  CAS  Google Scholar 

  • Lubick, N. (2010). Environment. Endosulfan’s exit: U.S. EPA pesticide review leads to a ban. Science, 328, 1466.

    Article  CAS  Google Scholar 

  • Martin, J. P. (1963). Influence of pesticide residues on soil microbiological and chemical properties, residue reviews/Rückstands-Berichte. Springer, pp, 96–129.

  • Naidu, M., & Prasanna, T. (2013). MICs of cypermethrin, chlorpyriphos and monochrotophos pesticides sprayed in agricultural fields of Coccinia grandis on soil microbes. Current Research of Microbiol Biotechnol, 1, 12–15.

    Google Scholar 

  • Omar, S., & Abdel-Sater, M. (2001). Microbial populations and enzyme activities in soil treated with pesticides. Water, Air, and Soil Pollution, 127, 49–63.

    Article  CAS  Google Scholar 

  • Peterson, S. M., & Batley, G. E. (1993). The fate of endosulfan in aquatic ecosystems. Environmental Pollution, 82, 143–152.

    Article  CAS  Google Scholar 

  • Rajakumar, A., Singh, R., Chakrabarty, S., Murugananthkumar, R., Laldinsangi, C., Prathibha, Y., Sudhakumari, C. C., Dutta-Gupta, A., & Senthilkumaran, B. (2012). Endosulfan and flutamide impair testicular development in the juvenile Asian catfish, Clarias batrachus. Aquatic Toxicology, 110, 123–132.

    Article  Google Scholar 

  • Shao, B., Zhu, L. S., Dong, M., Wang, J., Wang, J. H., Xie, H., Zhang, Q. M., Du, Z. K., & Zhu, S. Y. (2012). DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology, 21, 1533–1540.

    Article  CAS  Google Scholar 

  • Shen, L., Wania, F., Ying, D. L., Teixeira, C., Muir, D. C. G., & Bidleman, T. F. (2005). Atmospheric distribution and long-range transport behaviour of organochlorine pesticides in North America. Environmental Science & Technology, 39, 409–420.

    Article  CAS  Google Scholar 

  • Somtrakoon, K., Kratrachue, M., & Lee, H. (2014). Phytoreme diation of endosulfan sulfate-contaminated soil by single and mixed plant cultivations. Water, Air, and Soil Pollution, 225, 1886.

    Article  Google Scholar 

  • Sutherland, T. D., Horne, I., Lacey, M. J., Harcourt, R. L., Russell, R. J., & Oakeshott, J. G. (2000). Enrichment of an endosulfan-degrading mixed bacterial culture. Applied and Environmental Microbiology, 66(7), 2822–2828.

    Article  CAS  Google Scholar 

  • Tejada, M., García, C., Hernández, T., & Gómez, I. (2015). Response of soil microbial activity and biodiversity in soils polluted with different concentrations of Cypermethrin insecticide. Archives of Environmental Contamination and Toxicology, 69, 8–19.

    Article  CAS  Google Scholar 

  • Tipayno, S., Kim, C. G., & Sa, T. (2012). T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Applied Soil Ecology, 61, 137–146.

    Article  Google Scholar 

  • Tu, C., & Miles, J. (1976). Interactions between insecticides and soil microbes. Residue reviews. Springer. pp, 17–65.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., Hermanson, M., Hung, H., & Bidleman, T. (2010). Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. The Science of the Total Environment, 408, 2966–2984.

    Article  CAS  Google Scholar 

  • Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos, P., Verstraete, W., & Boon, N. (2009). Initial community evenness favours functionality under selective stress. Nature, 458, 623–626.

    Article  CAS  Google Scholar 

  • Yu, H. Y., Wang, Y. K., Chen, P. C., Li, F. B., Chen, M. J., & Hu, M. (2014). The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol. Journal of Hazardous Materials, 272, 10–19.

    Article  CAS  Google Scholar 

  • Zhang, Q. M., Zhu, L. S., Wang, J., Xie, H., Wang, J. H., Wang, F. H., & Sun, F. X. (2014). Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environmental Monitoring Assessment, 186, 2801–2812.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by grants from the National Key Research and Development Plan [No. 2016YFD0800202] and the National Natural Science Foundation of China [Nos. 21377075 and 41671320].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lusheng Zhu or Benying Su.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhu, L., Wang, J. et al. Effects of Endosulfan on the Populations of Cultivable Microorganisms and the Diversity of Bacterial Community Structure in Brunisolic Soil. Water Air Soil Pollut 228, 169 (2017). https://doi.org/10.1007/s11270-017-3357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3357-x

Keywords

Navigation