Skip to main content
Log in

Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential of a membrane bioreactor (MBR) system to treat Fischer-Tropsch (FT) reaction water from gas-to-liquids (GTL) industries was investigated and compared with the current treatment system: a conventional activated sludge system followed by an ultrafiltration (CAS-UF) unit. The MBR and the CAS-UF systems were inoculated with municipal activated sludge and operated in parallel for 645 days with four interruptions using synthetic FT reaction water. Both treatment systems achieved a removal efficiency of 98 ± 0.1% within 60 days after inoculation, the COD influent concentration was 1014 ± 15 mg L−1. This suggests that MBRs form a suitable alternative to CAS-UF systems for the treatment of FT reaction water from the GTL industries. Moreover, the total fouling rates (F t ) of the membranes used from day 349 till the end were assessed. The average F t was 7.3 ± 1.0 1010 m−1 day−1 for CAS-UF membranes and 2.8 ± 00.7 1010 m−1 day−1 for MBR-MT membranes. This indicates that MBR systems for the treatment of FT reaction water from the gas-to-liquids industries are less prone to fouling than CAS-UF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afgan, N. H., Pilavachi, P. A., & Carvalho, M. G. (2007). Multi-criteria evaluation of natural gas resources. Energy Policy, 35(1), 704–713.

    Article  Google Scholar 

  • APHA. (1976). Standard methods for the examination of water and wastewater. Washington, DC: APHA American Public Health Association.

    Google Scholar 

  • Calaway, W. T. (1963). Nematodes in wastewater treatment. Journal Water Pollution Control Federation, 35, 1006–1016.

    Google Scholar 

  • Chandra, S., Mines, R. O., & Sherrard, J. H. (1987). Evaluation of oxygen uptake rate as an activated sludge process control parameter. Journal Water Pollution Control Federation, 59(12), 1009–1016.

    CAS  Google Scholar 

  • Chiemchaisri, C., Yamamoto, K., & Vigneswaran, S. (1993). Household membrane bioreactor in domestic wastewater treatment. Water Science and Technology, 27(1), 171–178.

    CAS  Google Scholar 

  • Chua, H. C., Arnot, T. C., & Howell, J. A. (2002). Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination, 149(1–3), 225–229.

    Article  CAS  Google Scholar 

  • Fallah, N., Bonakdarpour, B., Nasernejad, B., & Alavi Moghadam, M. R. (2010). Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): effect of hydraulic retention time (HRT). Journal of Hazardous Materials, 178(1–3), 718–724.

    Article  CAS  Google Scholar 

  • Fazal, S., Zhang, B., Zhong, Z., Gao, L., & Chen, X. (2015). Industrial wastewater treatment by using MBR (membrane bioreactor) review study. Journal of Environmental Protection, 6(06), 584.

    Article  CAS  Google Scholar 

  • Gander, M., Jefferson, B., & Judd, S. (2000). Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology, 18(2), 119–130.

    Article  CAS  Google Scholar 

  • Goosen, M., Sablani, S., Al‐Hinai, H., Al‐Obeidani, S., Al‐Belushi, R., & Jackson, D. (2005). Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Separation Science and Technology, 39(10), 2261–2297.

    Article  Google Scholar 

  • Jacob, M., Guigui, C., Cabassud, C., Darras, H., Lavison, G., & Moulin, L. (2010). Performances of RO and NF processes for wastewater reuse: tertiary treatment after a conventional activated sludge or a membrane bioreactor. Desalination, 250(2), 833–839.

    Article  CAS  Google Scholar 

  • Kohler L. P. F. D., du Plessis G. H., du Toit F. G., Koper E. L., Phillips T. D. and van del Walt J. (2006). Method of purifying Fisher-Tropsch derived water. In: United States Patent. Sasol Technology (Pty) Ltd.

  • Krishna, C., & Van Loosdrecht, M. C. M. (1999). Effect of temperature on storage polymers and settleability of activated sludge. Water Research, 33(10), 2374–2382.

    Article  CAS  Google Scholar 

  • Le-Clech, P., Chen, V., & Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1–2), 17–53.

    Article  CAS  Google Scholar 

  • Lin, H., Gao, W., Meng, F., Liao, B.-Q., Leung, K.-T., Zhao, L., Chen, J., & Hong, H. (2012). Membrane bioreactors for industrial wastewater treatment: a critical review. Critical Reviews in Environmental Science and Technology, 42(7), 677–740.

    Article  CAS  Google Scholar 

  • Llop, A., Pocurull, E., & Borrull, F. (2009). Evaluation of the removal of pollutants from petrochemical wastewater using a membrane bioreactor treatment plant. Water, Air, and Soil Pollution, 197(1–4), 349–359.

    Article  CAS  Google Scholar 

  • Metcalf, & Eddy. (1991). Wastewater engineering: treatment disposal and reuse. New York: Irwin Mcgraw Hill.

    Google Scholar 

  • Min, K., & Ergas, S. J. (2006). Volatilization and biodegradation of VOCs in membrane bioreactors (MBR). Water, Air, & Soil Pollution: Focus, 6(1–2), 83–96.

    Article  CAS  Google Scholar 

  • Namkung, E., & Rittmann, B. E. (1987). Estimating volatile organic compound emissions from publicly owned treatment works. Journal Water Pollution Control Federation, 59, 670–678.

    CAS  Google Scholar 

  • Ondrey, G. (2004). Gas-to-liquid projects get the green light. Chemical Engineering, 111(5), 23.

    Google Scholar 

  • Perego, C., Bortolo, R., & Zennaro, R. (2009). Gas to liquids technologies for natural gas reserves valorization: the Eni experience. Catalysis Today, 142(1), 9–16.

    Article  CAS  Google Scholar 

  • Pollice, A., Laera, G., Saturno, D., & Giordano, C. (2008). Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage. Journal of Membrane Science, 317(1), 65–70.

    Article  CAS  Google Scholar 

  • Pon Saravan N. and Van Vuuren M. J. (2010). Process wastewater treatment and management in gas-to-liquids industries. In: SPE Oil and Gas India Conference, Society of Petroleum Engineers, India.

  • Roorda, J., & Van der Graaf, J. (2001). New parameter for monitoring fouling during ultrafiltration of WWTP effluent. Water Science and Technology, 43(10), 241–248.

    CAS  Google Scholar 

  • Rozzi, A., Antonelli, M., & Arcari, M. (1999). Membrane treatment of secondary textile effluents for direct reuse. Water Science and Technology, 40(4–5), 409–416.

    Article  CAS  Google Scholar 

  • Sahar, E., Ernst, M., Godehardt, M., Hein, A., Herr, J., Kazner, C., Melin, T., Cikurel, H., Aharoni, A., & Messalem, R. (2011). Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor. Water Science and Technology, 63(4), 733.

    Article  CAS  Google Scholar 

  • Sander, R. (2014). Compilation of Henry’s law constants, version 3.99. Atmospheric Chemistry and Physics Discussions, 14(21), 29615–30521.

    Article  Google Scholar 

  • Van Loosdrecht, M. C., & Henze, M. (1999). Maintenance, endogeneous respiration, lysis, decay and predation. Water Science and Technology, 39(1), 107–117.

    Article  Google Scholar 

  • Zaffaroni, C., Daigger, G., Nicol, P., & Lee, T. (2016). Wastewater treatment challenges faced by the petrochemical and refinery industry, and opportunities for water reuse. Water Practice Technology, 11(1), 104–117.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in the cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology (www.wetsus.eu). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the Province of Fryslân, and the Northern Netherlands Provinces. The authors like to thank the participants of the research theme “Membrane processes and operation for wastewater treatment and reuse” for the fruitful discussions and their financial support. This work is part of the research programme which is financed by the Province of Fryslân. The authors also thank Taylan Tuna, Magdalena Panecka, Ebru Acon, and Joris Burgard for their great contribution to the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judita Laurinonyte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurinonyte, J., Meulepas, R.J.W., van den Brink, P. et al. Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries. Water Air Soil Pollut 228, 137 (2017). https://doi.org/10.1007/s11270-017-3300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3300-1

Keywords

Navigation