Skip to main content
Log in

Sources and Persistence of Fecal Indicator Bacteria and Bacteroidales in Sand as Measured by Culture-Based and Culture-Independent Methods: a Case Study at Santa Monica Pier, California

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated causes of persistent fecal indicator bacteria (FIB) in beach sand under the pier in Santa Monica, CA. FIB levels were up to 1000 times higher in sand underneath the pier than that collected from adjacent to the pier, with the highest concentrations under the pier in spring and fall. Escherichia coli (EC) and enterococci (ENT) under the pier were significantly positively correlated with moisture (ρ = 0.61, p < 0.001, n = 59; ρ = 0.43, p < 0.001, n = 59, respectively), and ENT levels measured by qPCR (qENT) were much higher than those measured by membrane filtration (cENT). Microcosm experiments tested the ability of EC, qENT, cENT, and general Bacteroidales (GenBac) to persist under in situ moisture conditions (10 and 0.1%). Decay rates of qENT, cENT, and GenBac were not significantly different from zero at either moisture level, while decay rates for EC were relatively rapid during the microcosm at 10% moisture (k = 0.7 days−1). Gull/pelican marker was detected at 8 of 12 sites and no human-associated markers (TaqHF183 and HumM2) were detected at any site during a 1-day site survey. Results from this study indicate that the high levels of FIB observed likely stem from environmental sources combined with high persistence of FIB under the pier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelzaher, A. M., Wright, M. E., Ortega, C., Solo-Gabriele, H. M., Miller, G., Elmir, S., Newman, X., et al. (2010). Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach. Applied and Environmental Microbiology, 76(3), 724–732. doi:10.1128/AEM.02127-09.

    Article  CAS  Google Scholar 

  • Abdelzaher, A. M., Wright, M. E., Ortega, C., Hasan, A. R., Shibata, T., Solo-Gabriele, H. M., Kish, J., et al. (2011). Daily measures of microbes and human health at a non-point source marine beach. Journal of Water and Health, 9(3), 443. doi:10.2166/wh.2011.146.

    Article  Google Scholar 

  • Bell, A., Layton, A. C., McKay, L., Williams, D., Gentry, R., & Sayler, G. S. (2009). Factors influencing the persistence of fecal bacteroides in stream water. Journal of Environmental Quality, 38(3), 1224–1232. doi:10.2134/jeq2008.0258.

    Article  CAS  Google Scholar 

  • Boehm, A. B., & Weisberg, S. B. (2005). Tidal forcing of enterococci at marine recreational beaches at fortnightly and semidiurnal frequencies. Environmental Science & Technology, 39(15), 5575–5583. doi:10.1021/es048175m.

    Article  CAS  Google Scholar 

  • Boehm, A. B., Grant, S. B., Kim, J. H., Mowbray, S. L., McGee, C. D., Clark, C. D., Foley, D. M., & Wellman, D. E. (2002). Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environmental Science & Technology, 36(18), 3885–3892. doi:10.1021/es020524u.

    Article  CAS  Google Scholar 

  • Boehm, A. B., Fuhrman, J. A., Mrse, R. D., & Grant, S. B. (2003). Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. Environmental Science & Technology, 37(4), 673–680. doi:10.1021/es025934x.

    Article  CAS  Google Scholar 

  • Boehm, A. B., Griffith, J., McGee, C., Edge, T. A., Solo-Gabriele, H. M., Whitman, R., Cao, Y., et al. (2009). Faecal indicator bacteria enumeration in beach sand: a comparison study of extraction methods in medium to coarse sands. Journal of Applied Microbiology, 107(5), 1740–1750. doi:10.1111/j.1365-2672.2009.04440.x.

    Article  CAS  Google Scholar 

  • Boehm, A. B., Van De Werfhorst, L. C., Griffith, J. F., Holden, P. A., Jay, J. A., Shanks, O. C., Wang, D., & Weisberg, S. B. (2013). Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. Water Research, 47(18), 6812–6828. doi:10.1016/j.watres.2012.12.046.

    Article  CAS  Google Scholar 

  • Boehm, A. B., Yamahara, K. M., & Sassoubre, L. M. (2014). Diversity and transport of microorganisms in intertidal sands of the California Coast. Applied and Environmental Microbiology, 80(13), 3943–3951. doi:10.1128/AEM.00513-14.

    Article  Google Scholar 

  • Chick, H. (1908). An investigation of the laws of disinfection. The Journal of Hygiene, 8(1), 92–158.

    Article  CAS  Google Scholar 

  • Coakley, E., Parris, A. L., Wyman, A., & Latowsky, G. (2016). Assessment of enterococcus levels in recreational beach sand along the Rhode Island Coast. Journal of Environmental Health, 78(8), 12–17.

    CAS  Google Scholar 

  • Colford, J. M., Schiff, K. C., Griffith, J. F., Yau, V., Arnold, B. F., Wright, C. C., Gruber, J. S., et al. (2012). Using rapid indicators for enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water. Water Research, 46(7), 2176–2186. doi:10.1016/j.watres.2012.01.033.

    Article  CAS  Google Scholar 

  • Converse, R. R., Kinzelman, J. L., Sams, E. A., Hudgens, E., Dufour, A. P., Ryu, H., Santo-Domingo, J. W., et al. (2012a). Dramatic improvements in beach water quality following gull removal. Environmental Science & Technology, 46(18), 10206–10213. doi:10.1021/es302306b.

    CAS  Google Scholar 

  • Converse, R. R., Wymer, L. J., Dufour, A. P., & Wade, T. J. (2012b). Comparison of the multiple-sample means with composite sample results for fecal indicator bacteria by quantitative PCR and culture. Applied and Environmental Microbiology, 78(19), 7166–7169. doi:10.1128/AEM.01662-12.

    Article  CAS  Google Scholar 

  • Cui, H., Yang, K., Pagaling, E., & Yan, T. (2013). Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water. Applied and Environmental Microbiology, 79(12), 3601–3609. doi:10.1128/AEM.00135-13.

    Article  CAS  Google Scholar 

  • Desmarais, T. R., Solo-Gabriele, H. M., & Palmer, C. J. (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Applied and Environmental Microbiology, 68(3), 1165–1172. doi:10.1128/AEM.68.3.1165-1172.2002.

    Article  CAS  Google Scholar 

  • Dick, L. K., Stelzer, E. A., Bertke, E. E., Fong, D. L., & Stoeckel, D. M. (2010). Relative decay of bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. Applied and Environmental Microbiology, 76(10), 3255–3262. doi:10.1128/AEM.02636-09.

    Article  CAS  Google Scholar 

  • Eichmiller, J. J., Borchert, A. J., Sadowsky, M. J., & Hicks, R. E. (2014). Decay of genetic markers for fecal bacterial indicators and pathogens in sand from lake superior. Water Research, 59, 99–111. doi:10.1016/j.watres.2014.04.005.

    Article  CAS  Google Scholar 

  • Feng, F., Goto, D., & Yan, T. (2010). Effects of autochthonous microbial community on the die-off of fecal indicators in tropical beach sand. FEMS Microbiology Ecology, 74(1), 214–225. doi:10.1111/j.1574-6941.2010.00921.x.

    Article  CAS  Google Scholar 

  • Feng, Z., Reniers, A. D., Haus, B. K., & Solo-Gabriele, H. M. (2013). Modeling sediment-related enterococci loading, transport, and inactivation at an embayed nonpoint source beach. Water Resources Research, 49(2), 693–712. doi:10.1029/2012WR012432.

    Article  CAS  Google Scholar 

  • Haack, S. K., Fogarty, L. R., & Wright, C. (2003). Escherichia coli and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: sources, characteristics, and environmental pathways. Environmental Science & Technology, 37(15), 3275–3282. doi:10.1021/es021062n.

    Article  CAS  Google Scholar 

  • Halliday, E., & Gast, R. J. (2011). Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environmental Science & Technology, 45(2), 370–379. doi:10.1021/es102747s.

    Article  CAS  Google Scholar 

  • Halliday, E., Ralston, D. K., & Gast, R. J. (2015). Contribution of sand-associated enterococci to dry weather water quality. Environmental Science & Technology, 49(1), 451–458. doi:10.1021/es504908h.

    Article  CAS  Google Scholar 

  • Hansen, D. L., Ishii, S., Sadowsky, M. J., & Hicks, R. E. (2011). Waterfowl abundance does not predict the dominant avian source of beach Escherichia coli. Journal of Environmental Quality, 40(6), 1924–1931. doi:10.2134/jeq2011.0111.

    Article  CAS  Google Scholar 

  • Hartz, A., Cuvelier, M., Nowosielski, K., Bonilla, T. D., Green, M., Esiobu, N., McCorquodale, D. S., & Rogerson, A. (2008). Survival potential of and enterococci in subtropical beach sand: implications for water quality managers. Journal of Environment Quality, 37(3), 898. doi:10.2134/jeq2007.0312.

    Article  CAS  Google Scholar 

  • Haugland, R. A., Siefring, S., Wymer, L. J., Brenner, K. P., & Dufour, A. P. (2005). Comparison of enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Research, 39(4), 559–568. doi:10.1016/j.watres.2004.11.011.

    Article  CAS  Google Scholar 

  • Haugland, R. A., Varma, M., Sivaganesan, M., Kelty, C., Peed, L., & Shanks, O. C. (2010). Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected bacteroidales species and human fecal waste by qPCR. Systematic and Applied Microbiology, 33(6), 348–357. doi:10.1016/j.syapm.2010.06.001.

    Article  CAS  Google Scholar 

  • Heaney, C. D., Sams, E., Wing, S., Marshall, S., Brenner, K., Dufour, A. P., & Wade, T. J. (2009). Contact with beach sand among beachgoers and risk of illness. American Journal of Epidemiology, 170(2), 164–172. doi:10.1093/aje/kwp152.

    Article  Google Scholar 

  • Heaney, C. D., Sams, E., Dufour, A. P., Brenner, K. P., Haugland, R. A., Chern, E., Wing, S., et al. (2012). Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers. Epidemiology, 23(1), 95–106. doi:10.1097/EDE.0b013e31823b504c.

    Article  Google Scholar 

  • Heaney, C. D., Exum, N. G., Dufour, A. P., Brenner, K. P., Haugland, R. A., Chern, E., Schwab, K., et al. (2014). Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches. Science of the Total Environment, 497–498(November), 440–447. doi:10.1016/j.scitotenv.2014.07.113.

    Article  Google Scholar 

  • Jeanneau, L., Solecki, O., Wéry, N., Jardé, E., Gourmelon, M., Communal, P.-Y., Jadas-Hécart, A., Caprais, M.-P., Gruau, G., & Pourcher, A.-M. (2012). Relative decay of fecal indicator bacteria and human-associated markers: a microcosm study simulating wastewater input into seawater and freshwater. Environmental Science & Technology, 46(4), 2375–2382. doi:10.1021/es203019y.

    Article  CAS  Google Scholar 

  • Jiang, S. C., Chu, W., Olson, B. H., He, J., Choi, S., Zhang, J., Le, J. Y., & Gedalanga, P. B. (2007). Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Applied Microbiology and Biotechnology, 76(4), 927–934. doi:10.1007/s00253-007-1047-0.

    Article  CAS  Google Scholar 

  • Kildare, B. J., Leutenegger, C. M., McSwain, B. S., Bambic, D. G., Rajal, V. B., & Wuertz, S. (2007). 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal bacteroidales: a Bayesian approach. Water Research, Identifying Sources of Fecal Pollution, 41(16), 3701–3715. doi:10.1016/j.watres.2007.06.037.

    CAS  Google Scholar 

  • Kim, J. H., Grant, S. B., McGee, C. D., Sanders, B. F., & Largier, J. L. (2004). Locating sources of surf zone pollution: a mass budget analysis of fecal indicator bacteria at Huntington Beach, California. Environmental Science & Technology, 38(9), 2626–2636. doi:10.1021/es034831r.

    Article  CAS  Google Scholar 

  • Kinzelman, J. L., & McLellan, S. L. (2009). Success of science-based best management practices in reducing swimming bans—a case study from Racine, Wisconsin, USA. Aquatic Ecosystem Health & Management, 12(2), 187–196. doi:10.1080/14634980902907466.

    Article  Google Scholar 

  • Kirschner, A. K. T., & Velimirov, B. (1999). Benthic bacterial secondary production measured via simultaneous 3H-thymidine and 14C-leucine incorporation, and its implication on the carbon cycle of a shallow macrophyte-dominated backwater system. Limnology and Oceanography, 44(8), 1871–1881. doi:10.4319/lo.1999.44.8.1871.

    Article  CAS  Google Scholar 

  • Korajkic, A., Brownell, M. J., & Harwood, V. J. (2011). Investigation of human sewage pollution and pathogen analysis at Florida gulf coast beaches. Journal of Applied Microbiology, 110(1), 174–183. doi:10.1111/j.1365-2672.2010.04869.x.

    Article  CAS  Google Scholar 

  • Layton, B. A., Cao, Y., Ebentier, D. L., Hanley, K., Ballesté, E., Brandão, J., Byappanahalli, M., et al. (2013). Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research, 47(18), 6897–6908. doi:10.1016/j.watres.2013.05.060. Microbial Source Tracking.

    Article  CAS  Google Scholar 

  • Litton, R. M., Ahn, J. H., Sercu, B., Holden, P. A., Sedlak, D. L., & Grant, S. B. (2010). Evaluation of chemical, molecular, and traditional markers of fecal contamination in an effluent dominated urban stream. Environmental Science & Technology, 44(19), 7369–7375. doi:10.1021/es101092g.

    Article  CAS  Google Scholar 

  • Lu, J., Domingo, J. W. S., Lamendella, R., Edge, T., & Hill, S. (2008). Phylogenetic diversity and molecular detection of bacteria in gull feces. Applied and Environmental Microbiology, 74(13), 3969–3976. doi:10.1128/AEM.00019-08.

    Article  CAS  Google Scholar 

  • Lu, J., Ryu, H., Hill, S., Schoen, M., Ashbolt, N., Edge, T. A., & Domingo, J. S. (2011). Distribution and potential significance of a gull fecal marker in urban coastal and riverine areas of Southern Ontario, Canada. Water Research, 45(13), 3960–3968. doi:10.1016/j.watres.2011.05.003.

    Article  CAS  Google Scholar 

  • Marti, R., Gannon, V. P. J., Jokinen, C., Lanthier, M., Lapen, D. R., Neumann, N. F., Ruecker, N. J., et al. (2013). Quantitative multi-year elucidation of fecal sources of waterborne pathogen contamination in the south nation river basin using bacteroidales microbial source tracking markers. Water Research, 47(7), 2315–2324. doi:10.1016/j.watres.2013.02.009.

    Article  CAS  Google Scholar 

  • McQuaig, S., Griffith, J., & Harwood, V. J. (2012). Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Applied and Environmental Microbiology, 78(18), 6423–6432. doi:10.1128/AEM.00024-12.

    Article  CAS  Google Scholar 

  • US EPA Method 1600. (2006). Method 1600: enterococci in water by membrane filtration using membrane-enterococcus indoxy-B-D-glucoside agar (mEI). U.S. Environmental Protection Agency.

  • US EPA Method 1603. (2002). Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modifies membrane-thermotolerant Escherichia coli agar (Modified mTEC). U.S. Environmental Protection Agency. http://www.epa.gov/nerlcwww/documents/1603sp02.pdf.

  • US EPA Method 1611. (2012). Method 1611: enterococci in water by TaqMan quantitative polymerase chain reaction (qPCR) assay. U.S. Environmental Protection Agency. http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/Method-1611-Enterococci-in-Water-by-TaqMan-Quantitative-Polymerase-Chain-Reaction-qPCR-Assay.pdf.

  • Mika, K. B., Imamura, G., Chang, C., Conway, V., Fernandez, G., Griffith, J. F., Kampalath, R. A., et al. (2009). Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources. Journal of Applied Microbiology, 107(1), 72–84. doi:10.1111/j.1365-2672.2009.04197.x.

    Article  CAS  Google Scholar 

  • Mohamed, J. A., & Huang, D. B. (2007). Biofilm formation by enterococci. Journal of Medical Microbiology, 56(12), 1581–1588. doi:10.1099/jmm.0.47331-0.

    Article  CAS  Google Scholar 

  • Okabe, S., & Shimazu, Y. (2007). Persistence of host-specific bacteroides–prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Applied Microbiology and Biotechnology, 76(4), 935–944. doi:10.1007/s00253-007-1048-z.

    Article  CAS  Google Scholar 

  • Paul, S., Haan, P. K., Matlock, M. D., Mukhtar, S., & Pillai, S. D. (2004). Analysis of the HSPF water quality parameter uncertainty in predicting peak in-stream fecal coliform concentrations. Transactions of the American Society of Agricultural Engineers, 47(1), 69–78. doi:10.13031/2013.15872.

    Article  Google Scholar 

  • Phillips, M. C., Solo-Gabriele, H. M., Piggot, A. M., Klaus, J. S., & Zhang, Y. (2011a). Relationships between sand and water quality at recreational beaches. Water Research, 45(20), 6763–6769. doi:10.1016/j.watres.2011.10.028.

    Article  CAS  Google Scholar 

  • Phillips, M. C., Solo-Gabriele, H. M., Reniers, A. J. H. M., Wang, J. D., Kiger, R. T., & Abdel-Mottaleb, N. (2011b). Pore water transport of enterococci out of beach sediments. Marine Pollution Bulletin, 62(11), 2293–2298. doi:10.1016/j.marpolbul.2011.08.049.

    Article  CAS  Google Scholar 

  • Piggot, A. M., Klaus, J. S., Johnson, S., Phillips, M. C., & Solo-Gabriele, H. M. (2012). Relationship between enterococcal levels and sediment biofilms at recreational beaches in South Florida. Applied and Environmental Microbiology, 78(17), 5973–5982. doi:10.1128/AEM.00603-12.

    Article  CAS  Google Scholar 

  • Ran, Q., Badgley, B. D., Dillon, N., Dunny, G. M., & Sadowsky, M. J. (2013). Occurrence, genetic diversity, and persistence of enterococci in a lake superior watershed. Applied and Environmental Microbiology, 79(9), 3067–3075. doi:10.1128/AEM.03908-12.

    Article  CAS  Google Scholar 

  • Riedel, T. E., Zimmer-Faust, A. G., Thulsiraj, V., Madi, T., Hanley, K. T., Ebentier, D. L., Byappanahalli, M., et al. (2014). Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters. Journal of Environmental Management, 136(April), 112–120. doi:10.1016/j.jenvman.2014.01.029.

    Article  CAS  Google Scholar 

  • Rogers, S. W., Donnelly, M., Peed, L., Kelty, C. A., Mondal, S., Zhong, Z., & Shanks, O. C. (2011). Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Applied and Environmental Microbiology, 77(14), 4839–4848. doi:10.1128/AEM.02427-10.

    Article  CAS  Google Scholar 

  • Rogerson, A., Estiobu, N., & McCorquodale, D. (2003). Prevalence and survival of microorganisms in shoreline intertitial waters: a search for indicators of health risks. U.S. Environmental Protection Agency. http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/1009/report/F.

  • Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M., Duarte, A., Faria, N., et al. (2014). Routine screening of harmful microorganisms in beach sands: implications to public health. The Science of the Total Environment, 472(February), 1062–1069. doi:10.1016/j.scitotenv.2013.11.091.

    Article  CAS  Google Scholar 

  • Sanders, B. F., Arega, F., & Sutula, M. (2005). Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland. Water Research, 39(14), 3394–3408. doi:10.1016/j.watres.2005.06.004.

    Article  CAS  Google Scholar 

  • Schmugge, T. J., Jackson, T. J., & McKim, H. L. (1980). Survey of methods for soil moisture determination. Water Resources Research, 16(6), 961–979. doi:10.1029/WR016i006p00961.

    Article  Google Scholar 

  • Shah, A. H., Abdelzaher, A. M., Phillips, M., Hernandez, R., Solo-Gabriele, H. M., Kish, J., Scorzetti, G., et al. (2011). Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site. Journal of Applied Microbiology, 110(6), 1571–1583. doi:10.1111/j.1365-2672.2011.05013.x.

    Article  CAS  Google Scholar 

  • Shanks, O. C., Kelty, C. A., Sivaganesan, M., Varma, M., & Haugland, R. A. (2009). Quantitative PCR for genetic markers of human fecal pollution. Applied and Environmental Microbiology, 75(17), 5507–5513. doi:10.1128/AEM.00305-09.

    Article  CAS  Google Scholar 

  • Shibata, T., Solo-Gabriele, H. M., Fleming, L. E., & Elmir, S. (2004). Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Research, 38(13), 3119–3131. doi:10.1016/j.watres.2004.04.044.

    Article  CAS  Google Scholar 

  • Sinigalliano, C. D., Ervin, J. S., Van De Werfhorst, L. C., Badgley, B. D., Ballesté, E., Bartkowiak, J., Boehm, A. B., et al. (2013). Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources. Water Research, 47(18), 6883–6896. doi:10.1016/j.watres.2013.02.059.

    Article  CAS  Google Scholar 

  • Tambalo, D. D., Fremaux, B., Boa, T., & Yost, C. K. (2012). Persistence of host-associated bacteroidales gene markers and their quantitative detection in an urban and agricultural mixed prairie watershed. Water Research, 46(9), 2891–2904. doi:10.1016/j.watres.2012.02.048.

    Article  CAS  Google Scholar 

  • US EPA. (2012). Recreational water quality criteria.

  • US EPA Method A. (2010). Method A: enterococci in water by TaqMan quantitative polymerase chain reaction (qPCR) assay. U.S. Environmental Protection Agency. http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/rapid1.pdf.

  • US EPA Method B. (2010). Method B: bacteroidales in water by TaqMan quantitative polymerase chain reaction (qPCR) assay. U.S. Environmental Protection Agency. http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/methodb2010.pdf.

  • Wade, T. J., Calderon, R. L., Sams, E., Beach, M., Brenner, K. P., Williams, A. H., & Dufour, A. P. (2006). Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environmental Health Perspectives, 114(1), 24–28. doi:10.1289/ehp.8273.

    Article  Google Scholar 

  • Wade, T. J., Sams, E., Brenner, K. P., Haugland, R., Wymer, L., & Dufour, A. P. (2009). High sensitivity of children to swimming-associated gastrointestinal illness. Epidemiology, 20(1), 157. doi:10.1097/EDE.0b013e31818f30a6.

    Article  Google Scholar 

  • Walters, S. P., Yamahara, K. M., & Boehm, A. B. (2009). Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Research, 43(19), 4929–4939. doi:10.1016/j.watres.2009.05.047.

    Article  CAS  Google Scholar 

  • Wang, D., Farnleitner, A. H., Field, K. G., Green, H. C., Shanks, O. C., & Boehm, A. B. (2013). Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers—is it feasible? Water Research, 47(18), 6849–6861. doi:10.1016/j.watres.2013.02.058.

    Article  CAS  Google Scholar 

  • Watson, H. E. (1908). A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. Epidemiology & Infection, 8(04), 536–542. doi:10.1017/S0022172400015928.

    CAS  Google Scholar 

  • Wieltschnig, C., Fischer, U. R., Kirschner, A. K. T., & Velimirov, B. (2003). Benthic bacterial production and protozoan predation in a silty freshwater environment. Microbial Ecology, 46(1), 62–72. doi:10.1007/s00248-002-2040-x.

    Article  CAS  Google Scholar 

  • Wither, A., Rehfisch, M., & Austin, G. (2005). The impact of bird populations on the microbiological quality of bathing waters. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 51(3–4), 199–207.

    CAS  Google Scholar 

  • Yamahara, K. M., Layton, B. A., Santoro, A. E., & Boehm, A. B. (2007). Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environmental Science & Technology, 41(13), 4515–4521. doi:10.1021/es062822n.

    Article  CAS  Google Scholar 

  • Yamahara, K. M., Walters, S. P., & Boehm, A. B. (2009). Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Applied and Environmental Microbiology, 75(6), 1517–1524. doi:10.1128/AEM.02278-08.

    Article  CAS  Google Scholar 

  • Yamahara, K. M., Sassoubre, L. M., Goodwin, K. D., & Boehm, A. B. (2012). Occurrence and persistence of bacterial pathogens and indicator organisms in beach sand along the California coast. Applied and Environmental Microbiology, 78(6), 1733–1745. doi:10.1128/AEM.06185-11.

    Article  CAS  Google Scholar 

  • Yampara-Iquise, H., Zheng, G., Jones, J. E., & Carson, C. A. (2008). Use of a bacteroides thetaiotaomicron-specific α-1-6, mannanase quantitative PCR to detect human faecal pollution in water. Journal of Applied Microbiology, 105(5), 1686–1693. doi:10.1111/j.1365-2672.2008.03895.x.

    Article  CAS  Google Scholar 

  • Zhang, Q., He, X., & Yan, T. (2015). Impact of indigenous microbiota of subtidal sand on fecal indicator bacteria decay in beach systems: a microcosm study. Environmental Science: Water Research & Technology. doi:10.1039/C5EW00004A.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Rick Valte and Neal Shapiro for their assistance and to the City of Santa Monica for funding this work. We thank Dr. Amy Zimmer-Faust, Dr. Vanessa Thulsiraj, and Dr. Timothy Riedel for laboratory and field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Jay.

Additional information

Highlights

• FIB levels were consistently higher in sand underneath the pier than that collected from adjacent to the pier, showing highest concentrations under the pier in spring and fall.

• EC and ENT were significantly positively correlated with moisture (ρ = 0.61, p < 0.001, n = 59; ρ = 0.43, p < 0.001, n = 59, respectively).

• Minimal decay was observed throughout the course of two microcosms at various moisture levels for ENT and GenBac.

• GenBac was not correlated with either cENT or EC. The strongest correlation was between cENT and EC (r 2 = 0.649, p = 0.002).

• Human markers were not detected, but gull/pelican fecal markers were detected at 8 of 12 sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mika, K.B., Chavarria, K.A., Imamura, G. et al. Sources and Persistence of Fecal Indicator Bacteria and Bacteroidales in Sand as Measured by Culture-Based and Culture-Independent Methods: a Case Study at Santa Monica Pier, California. Water Air Soil Pollut 228, 124 (2017). https://doi.org/10.1007/s11270-017-3291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3291-y

Keywords

Navigation