Skip to main content
Log in

Comparison of Kinetics of Arsenic(V) Adsorption on Two Types of Red Soil Weathered from Granite and Sandstone

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Untreated arsenic polluted groundwater is threatening people health, especially the people in rural areas. Soil may become one kind of promising natural material applied conveniently in rural areas for the treatment of arsenic polluted groundwater, due to its abundance, low cost, and high adsorption efficiency. The present study investigated arsenic(V) (As(V)) adsorption on two red soil samples weathered from granite (RSG) and sandstone (RSS). The two soil samples contain similar mineral types but show relatively high differences of content of iron, aluminum, and organic matter (OM), as well as point of zero charge (pHPZC) and specific surface area (SSA). Batch experiments were performed to examine the effect of initial As(V) concentration, solution pH, and temperature on the kinetics of the adsorption of As(V) by the two soil samples. The experimental results showed that the As(V) adsorption onto the two soil samples was influenced by the physicochemical properties of the soils, especially the content of iron and aluminum, the OM, as well as the pHPZC, and chemisorption was the main adsorption mechanism. The RSG sample with higher content of iron and aluminum and pHPZC showed relatively high adsorption efficiency. The OM played a negative role in the adsorption process, especially as the As/Fe molar ratio is higher. Higher adsorption capacities for the two soil samples were both obtained at lower initial As(V) concentration (1.50 and 4.0 mg/l), lower pH value (5.0), and higher temperature (313 K). Comparing to the RSS, the RSG is more suitable for the treatment of As(V)-polluted groundwater. Considering the experimental results and the natural conditions, the suggested operational conditions are pH around 7.0, temperature 293–303 K, As(V) concentration less than 4.0 mg/l, and hydraulic retention time no less than 180 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahoulé, D. G., Lalanne, F., Mendret, J., Brosillon, S., & Maïga, A. H. (2015). Arsenic in African Waters: A Review. Water, Air, & Soil Pollution, 226, 302–314.

    Article  Google Scholar 

  • Aide, M., Beighley, D., & Dunn, D. (2016). Arsenic in the soil environment: a soil chemistry review. International Journal of Applied Agricultural Research, 11(1), 1–28.

    Article  Google Scholar 

  • Al Lawati, W. M., Rizoulis, A., Eiche, E., Boothman, C., Polya, D. A., Lloyd, J. R., Berg, M., Vasquez-Aguilar, P., & van Dongen, B. E. (2012). Characterization of organic matter and microbial communities in contrasting arsenic-rich Holocene and arsenic poor Pleistocene aquifers, Red River Delta, Vietnam. Applied Geochemistry, 27, 315–325.

    Article  CAS  Google Scholar 

  • Alshaebi, F. Y., Yaacob, W. Z. W., & Samsudin, A. R. (2010). Removal of Arsenic from Contaminated Water by Selected Geological Natural materials. Australian Journal of Basic & Applied Sciences, 4(9), 4413–4422.

    CAS  Google Scholar 

  • Andjelkovic, I., Tran, D. H., Kaviri, S., Azari, S., Markovic, M., & Losic, D. (2015). Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenide from contaminated waters. Applied Materials & Interfaces, 7, 9758–9766.

    Article  CAS  Google Scholar 

  • Bentahar, Y., Hurel, C., Draoui, K., Khairoun, S., & Marmier, N. (2016). Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Applied Clay Science, 119, 385–392.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016). Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere, 152, 520–529.

    Article  CAS  Google Scholar 

  • Chen, H.W., Chen, H.H., Liu, L., Liu, F., Gong, R.Y., Wei, R.C., & Yi, Q.H. (2016). Impacts of Physicochemical Properties of Soil on Arsenic(V) Removal from Aqueous Phase: Adsorption Comparison Between Soils Weathering from Granite and Sandstone. Applied Clay Science, Submitted.

  • Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Journal of Environmental Management, 91, 2238–2247.

    Article  CAS  Google Scholar 

  • Dai, M., Xia, L., Song, S. X., Peng, C. S., & Lopez-Valdivieso, A. (2016). Adsorption of As(V) inside the pores of porous hematite in water. Journal of Hazardous Materials, 307, 312–317.

    Article  CAS  Google Scholar 

  • De Oliveira, L. K., Melo, C. A., Goveia, D., Lobo, F. A., Hernández, M. A. A., Fraceto, L. F., & Rosa, A. H. (2015). Adsorption/desorption of arsenic by tropical peat: influence of organic matter, iron and aluminium. Environmental Technology, 36(2), 149–159.

    Article  Google Scholar 

  • Dousova, B., Buzek, F., Rothwell, J., Krejcova, S., & Lhotka, M. (2012). Adsorption behavior of arsenic relating to different natural solids: soils, stream sediments and peats. Science of the Total Environment, 433, 456–461.

    Article  CAS  Google Scholar 

  • Du, J. J., Jing, C. Y., Duan, J. M., Zhang, Y. L., & Hu, S. (2014). Removal of arsenate with hydrous ferric oxide coprecipitation: Effect of humic acid. Journal of Environmental Sciences, 26, 240–247.

    Article  CAS  Google Scholar 

  • Escudero, C., Fiol, N., Villaescusa, I., & Bollinger, J. C. (2009). Arsenic removal by waste metal (hydr)oxide entrapped into calcium alginate beads. Journal of Hazardous Materials, 164, 533–541.

    Article  CAS  Google Scholar 

  • Feng, Q. Z., Zhang, Z. Y., Chen, Y., Liu, L. Y., Zhang, Z. J., & Chen, C. Z. (2013). Adsorption and desorption characteristics of arsenic on soils: kinetics, equilibrium, and effect of Fe(OH)3 colloid, H2SiO3 colloid and phosphate. Procedia Environmental Sciences, 18, 26–36.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Khezami, L., & Capart, R. (2005). Removal of chromium(VI) fromaqueous solution by activated carbons: kinetic and equilibrium studies. Journal of Hazardous Materials, B123, 223–231.

    Article  Google Scholar 

  • Kim, E. J., Yoo, J.-C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.

    Article  CAS  Google Scholar 

  • Kim, E. J., Hwang, B. R., & Baek, K. (2015). Effects of natural organic matter on the coprecipitation of arsenic with iron. Environmental Geochemistry & Health, 37(6), 1029–1039.

    Article  CAS  Google Scholar 

  • Kumar, R., Kumar, R., Mittal, S., Arora, M., & Babu, J. N. (2016). Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. Journal of Soils & Sediments, 16(2), 605–620.

    Article  CAS  Google Scholar 

  • Kwon, M. S., Lee, M. G., Mok, Y. G., & Chung, J. W. (2013). Adsorption of Decomposed-Granite Soils Varying with Weathering on Heavy Metals. Journal of the Korean Geoenvironmental Society, 14(10), 59–64.

    Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (4), 1–39.

  • Lawson, M., Polya, D. A., Boyce, A. J., Bryant, C., & Ballentine, C. J. (2016). Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochimica et Cosmochimica Acta, 178, 160–177.

    Article  CAS  Google Scholar 

  • Li, P. C., Xu, D. R., Chen, G. H., Xia, B., He, Z. L., & Fu, G. G. (2005). Constraints of petrography, geochemistry and Sr-Nd isotopes on the Jinjing granitoids from northeastern Hunan province, China: implications for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21(3), 921–934.

    CAS  Google Scholar 

  • Liu, R. P., Zhu, L. J., He, Z., Lan, H. C., Liu, H. J., & Qu, J. H. (2015). Simultaneous removal of arsenic and fluoride by freshly-prepared aluminum hydroxide. Colloids and Surfaces A: Physicochemical & Engineering Aspects, 466, 147–153.

    Article  CAS  Google Scholar 

  • Liu, Y. K., Hu, P., Zheng, J. T., Wu, M. B., & Jiang, B. (2016). Utilization of spent aluminum for p-arsanilic acid degradation and arsenic immobilization mediated by Fe(II) under aerobic condition. Chemical Engineering Journal, 297, 45–54.

    Article  CAS  Google Scholar 

  • Ma, J., Guo, H. M., Lei, M., Zhou, X. Y., Li, F. L., Yu, T., Wei, R. F., Zhang, H. Z., Zhang, X., & Yang, W. (2015). Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, & Soil Pollution, 226, 260–274.

    Article  Google Scholar 

  • Maiti, A., Basu, J. K., & De, S. (2010). Removal of Arsenic from Synthetic and Natural Groundwater Using Acid-Activated Laterite. Environmental Progress & Sustainable Energy, 29(4), 457–470.

    Article  CAS  Google Scholar 

  • Mak, M. S. H., & Lo, I. M. C. (2011). Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Chemosphere, 84, 234–240.

    Article  CAS  Google Scholar 

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2009). Arsenic adsorption onto hematite and goethite. Comptes Rendus Chimie, 12(8), 876–881.

    Article  CAS  Google Scholar 

  • Mertens, J., Rose, J., Wehrli, B., & Furrer, G. (2016). Arsenate uptake by Al nanoclusters and other Al-based sorbents during water treatment. Water Research, 88, 844–851.

    Article  CAS  Google Scholar 

  • Meunier, L., Koch, I., & Reimer, K. J. (2011). Effects of organic matter and ageing on the bioaccessibility of arsenic. Environmental Pollution, 159, 2530–2536.

    Article  CAS  Google Scholar 

  • Mikutta, R., Lorenz, D., Guggenberger, G., Haumaier, L., & Freund, A. (2014). Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption. Geochimica et Cosmochimica Acta, 144, 258–276.

    Article  CAS  Google Scholar 

  • Panagiotaras, D., & Nikolopoulos, D. (2015). Arsenic Occurrence and Fate in the Environment; A Geochemical Perspective. Journal of Earth Science & Climatic Change, 6(4), 1–9.

    Google Scholar 

  • Panagiotaras, D., Papoulis, D., & Stathatos, E. (2015). Origin of Arsenic Toxicity–Geochemistry. Chapter 4. In Narayan Chakrabarty (Ed.), Arsenic Toxicity: Prevention and Treatment. Boca Raton: CRC press, Taylor & Francis publishers.

  • Paul, S., Chakraborty, S., Ali, M. N., & Ray, D. P. (2015). Arsenic distribution in environment and its bioremediation: A review. International Journal of Agriculture, Environment & Biotechnology, 8(1), 189–204.

    Article  Google Scholar 

  • Postma, D., Larsen, F., Thai, N. T., Trang, P. T. K., Jakobsen, R., Nhan, P. Q., Long, T. V., Viet, P. H., & Murray, A. S. (2012). Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nature Geoscience, 5, 656–661.

    Article  CAS  Google Scholar 

  • Ranasinghe, R. M. S. C., Werellagama, D. R. I. B., & Weerasooriya, R. (2014). Arsenite removal from drinking water using naturally available laterite in Sri Lanka. Engineer, 17(2), 23–31.

    Google Scholar 

  • Rodríguez-Lado, L., Sun, G. F., Michael, B., Zhang, Q., Xue, H. B., Zheng, Q. M., & Johnson, C. A. (2013). Groundwater arsenic contamination throughout China. Science, 341, 866–868.

    Article  Google Scholar 

  • Rowland, H. A. L., Gault, A. G., Lythgoe, P., & Polya, D. A. (2008). Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia. Applied Geochemistry, 23(11), 3029–3046.

    Article  CAS  Google Scholar 

  • Sigrist, M., Albertengo, A., Brusa, L., Beldoménico, H., & Tudino, M. (2013). Distribution of inorganic arsenic species in groundwater from Central-West Part of Santa Fe Province, Argentina. Applied Geochemistry, 39, 43–48.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology & Environmental Safety, 112, 247–270.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, E., & Naidu, R. (2009). Chemistry of inorganic arsenic in soils: kinetics of arsenic adsorption desorption. Environmental Geochemistry & Health, 31, 49–59.

    Article  CAS  Google Scholar 

  • Sutherland, C. (2004). Removal of heavy metals from waters using low cost adsorbents: process development. PhD Thesis. The University of the West Indies, Trinidad, p. 150–164.

  • Tan, B. X., & Wang, G. X. (1983). On the geologic age of the “Yuelu sandstone”. Geological Review, 29(6), 553–561.

    Google Scholar 

  • Tareq, S. M., Maruo, M., & Ohta, K. (2013). Characteristics and role of groundwater dissolved organic matter on arsenic mobilization and poisoning in Bangladesh. Physics & Chemistry of the Earth, 58–60, 77–84.

    Article  Google Scholar 

  • Weber, W. J., & Morris, I. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, American Society of Civil Engineers, 89(2), 31–60.

    Google Scholar 

  • Yazdani, M., Tuutijärvi, T., Bhatnagar, A., & Vahala, R. (2016). Adsorptive removal of arsenic from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. Journal of Molecular Liquids, 214, 149–156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to send sincere appreciation to China Hunan Provincial Science and Technology Department for the funds and the reviewers for their good proposals for revision of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, L., Gong, R. et al. Comparison of Kinetics of Arsenic(V) Adsorption on Two Types of Red Soil Weathered from Granite and Sandstone. Water Air Soil Pollut 227, 406 (2016). https://doi.org/10.1007/s11270-016-3107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3107-5

Keywords

Navigation