Skip to main content

Advertisement

Log in

Chemistry of inorganic arsenic in soils: kinetics of arsenic adsorption–desorption

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The influence of ionic strength, index cations and competing anions on arsenate (AsV) adsorption–desorption kinetics was studied in an Alfisol soil. A flow-through reactor system similar to that developed by Carski and Sparks (Soil Sci Soc Am J 49:1114–1116, 1985) was constructed for the experiments. Arsenate adsorption kinetics for all the treatments were initially fast with 58–91% of AsV adsorbed in the first 15 min. Beyond 15 min, AsV adsorption continued at a slower rate for the observation period of the experiments. Changes in the solution composition had differing effects on the cumulative amount of AsV adsorbed by the soil. Ionic strength and different index cations had little effect on the amount of AsV adsorbed, while the presence of phosphate decreased the amount of AsV adsorbed from 169 to 89 and 177 to 115 g AsV μg−1 in 0.03 M sodium nitrate and 0.01 M calcium nitrate, respectively. Considerably less AsV was desorbed than was adsorbed, with only between 2 to 17% of the adsorbed AsV desorbed. The presence of phosphate increased the amount of AsV desorbed by 17%, but other changes in the solution ionic strength or index cation had little effect on the amount of AsV desorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharoni, C., Levison, S., Ravina, I., & Sparks, D. L. (1991). Kinetics of soil chemical reactions: Relationships between empirical equations and diffusion models. Soil Science Society of America Journal, 55, 1307–1312.

    CAS  Google Scholar 

  • Amacher, M. C. (1991). Methods of obtaining and analysing kinetic data. In D. L. Sparks & D. L. Suarez (Eds.), Rates of chemical processes. Madison, USA: Soil Science Society of America.

    Google Scholar 

  • Anderson, M. A., Ferguson, J. F., & Gavis, J. (1976). Arsenate adsorption on amorphous aluminium hydroxide. Journal of Colloid and Interface Science, 54, 391–399.

    Article  CAS  Google Scholar 

  • Bar-Tal, A., Eick, M. J., Feigenbaum, S., Sparks, D. L., & Fishman, S. (1995). Determination of rate coefficients for potassium–calcium exchange on vermiculite using a stirred-flow chamber. Soil Science Society of America Journal, 59, 760–765.

    CAS  Google Scholar 

  • Bar-Tal, A., Sparks, D. L., Pesek, J. D., & Feigenbaum, S. (1990). Analyses of adsorption kinetics using a stirred-flow chamber: I. Theory and critical tests. Soil Science Society of America Journal, 54, 1248–1253.

    Google Scholar 

  • Bolan, N. S., Naidu, R., Syers, J. K., & Tillman, R. W. (1999). Surface charge and solute interaction in soils. Advances in Agronomy, 67, 88–141.

    Article  Google Scholar 

  • Bruemmer, G. W., Gerth, J., & Tiller, K. G. (1988). Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and desorption of metals. Journal of Soil Science, 39, 37–52.

    Article  CAS  Google Scholar 

  • Carski, T. H., & Sparks, D. L. (1985). A modified miscible displacement technique for investigating adsorption–desorption kinetics in soils. Soil Science Society of America Journal, 49, 1114–1116.

    Article  CAS  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Application of the Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44, 265–268.

    CAS  Google Scholar 

  • Darland, J. E., & Innskeep, W. P. (1997). Effects of pH and phosphate competition on the transport of arsenate. Journal of Environment Quality, 26, 1133–1139.

    CAS  Google Scholar 

  • Eick, M. J., Bar-Tal, A., Sparks, D. L., & Feigenbaum, S. (1990). Analyses of adsorption kinetics using a stirred-flow chamber. Soil Science Society of America Journal, 54, 1278–1282.

    CAS  Google Scholar 

  • Elkhatib, E. A., Bennett, O. L., & Wright, R. J. (1984). Arsenite sorption and desorption in soils. Soil Science Society of America Journal, 48, 1025–1030.

    Article  CAS  Google Scholar 

  • Fendorf, S., Eick, M. J., Grossl, P., & Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science and Technology, 31, 315–320.

    Article  CAS  Google Scholar 

  • Fuller, C. C., Davis, J. A., & Waychunas, G. A. (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta, 57, 2271–2282.

    Article  CAS  Google Scholar 

  • GENSTAT 5. (1997). Release 4.1. Lawes agricultural trust (3rd ed.). Rothamsted, England: ICAR.

    Google Scholar 

  • Grafe, M., & Sparks, D. L. (2005). Kinetics of zinc and arsenate co-sorption at the goethite–water interface. Geochimica et Cosmochimica Acta, 69, 4573–4595.

    Article  CAS  Google Scholar 

  • Harter, R. D. (1991). Kinetic of sorption/desorption processes in soil. In D. L. Sparks & D. L. Suarez (Eds.), Rates of chemical processes. Madison, USA: Soil Science Society of America.

    Google Scholar 

  • Hundal, L. S., & Pasricha, N. S. (1998). Adsorption–desorption kinetics of potassium as influenced by temperature and background anions. Geoderma, 83, 215–225.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 33, 121–131.

    Article  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1997a). Adsorption and stability of arsenic(III) at the clay mineral–water interface. Environmental Science and Technology, 31, 2005–2011.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1997b). Arsenic(III) and arsenic(V) adsorption on three California soils. Soil Science, 162, 886–895.

    Article  CAS  Google Scholar 

  • McLaren, R., Naidu, R., Smith, J., & Tiller, K. G. (1998). Fractionation and distribution of arsenic in soils contaminated by cattle dip. Journal of Environment Quality, 27, 348–354.

    CAS  Google Scholar 

  • Parfitt, R. L. (1978). Anion adsorption by soils and materials. Advances in Agronomy, 30, 1–50.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1980). Adsorption of arsenite and arsenate on amorphous iron hydroxide from dilute aqueous solutions. Environmental Science and Technology, 14, 214–216.

    Article  CAS  Google Scholar 

  • Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium and adsorption envelopes. Environmental Science and Technology, 32, 344–349.

    Article  CAS  Google Scholar 

  • Roy, W. R., Hassett, J. J., & Griffin, R. A. (1986). Competitive interactions of phosphate and molbdate on arsenate sorption. Soil Science, 142, 203–210.

    Article  CAS  Google Scholar 

  • Sadusky, M. C., & Sparks, D. L. (1991). Anionic effects on potassium reactions in variable-charge Atlantic coastal plain soils. Soil Science Society of America Journal, 55, 371–375.

    CAS  Google Scholar 

  • Schnabel, R. R., & Fitting, D. J. (1988). Analyses of chemical kinetics data from dilute, dispersed, well-mixed flow-through systems. Soil Science Society of America Journal, 52, 1270–1273.

    Google Scholar 

  • Schnabel, R. R., & Richie, E. B. (1987). Elimination of the time assignment bias in estimates of dispersion coefficient. Soil Science Society of America Journal, 51, 302–304.

    Article  Google Scholar 

  • Scott, M. J., & Morgan, J. J. (1995). Reactions of oxide surfaces. I. Oxidation of As(III) by synthetic birnessite. Environmental Science and Technology, 29, 1898–1905.

    Article  CAS  Google Scholar 

  • Seyfried, M. S., Sparks, D. L., Bar-Tal, A., & Feigenbaum, S. (1989). Kinetics of calcium–magnesium exchange on soil using a stirred-flow reaction chamber. Soil Science Society of America Journal, 53, 406–410.

    CAS  Google Scholar 

  • Skopp, J. (1986). Analysis of time-dependent chemical processes in soils. Journal of Environment Quality, 15, 205–213.

    CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1999). Sorption of arsenate and arsenite by four Australian soils. Journal of Environment Quality, 28, 1719–1726.

    CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (2002). Chemistry of inorganic arsenic in soils: II. Effect of P, Na and Ca. Journal of Environment Quality, 31, 557–563.

    Article  CAS  Google Scholar 

  • Smith, E., Smith, J., Smith, L., Biswas, T., Correll, R., & Naidu, R. (2003). Arsenic in the Australian environment: An overview. Journal of Environmental Science and Health Part A, 38, 223–239.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1989). Kinetics of soil processes. New York: Academic Press.

    Google Scholar 

  • Sparks, D. L., & Jardine, P. M. (1984). Comparison of kinetic equations to describe potassium–calcium exchange in pure and mixed systems. Soil Science, 138, 115–122.

    Article  CAS  Google Scholar 

  • Sparks, D. L., Zelazny, L. W., & Martens, D. C. (1980). Kinetics of potassium exchange in a paleudult from the coastal plain of Virginia. Soil Science Society of America Journal, 44, 37–40.

    Article  CAS  Google Scholar 

  • Toner, C. V., I. V., Sparks, D. L., & Carski, T. H. (1989). Anion exchange chemistry of middle Atlantic soils: Charge properties and nitrate retention kinetics. Soil Science Society of America Journal, 53, 1061–1067.

    Article  Google Scholar 

  • Ungarish, M., & Aharoni, C. (1981). Kinetics of chemisorption: Deducing kinetic laws from experimental data. Journal of Chemical Society Faraday Transactions, 1, 975–979.

    Article  Google Scholar 

  • Waychunas, G. A., Rea, B. A., Fuller, C. C., & Davis, J. A. (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta, 57, 2251–2269.

    Article  CAS  Google Scholar 

  • Yin, Y., Allen, H. E., Huang, C. P., Sparks, D. L., & Sanders, P. F. (1997). Kinetics of mercury(II) adsorption and desorption on soil. Environmental Science and Technology, 31, 496–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E., Naidu, R. Chemistry of inorganic arsenic in soils: kinetics of arsenic adsorption–desorption. Environ Geochem Health 31 (Suppl 1), 49–59 (2009). https://doi.org/10.1007/s10653-008-9228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9228-z

Keywords

Navigation