Skip to main content
Log in

Adsorption of Iron(II) from Acid Mine Drainage Contaminated Groundwater Using Coal Fly Ash, Coal Bottom Ash, and Bentonite Clay

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) is a persisting environmental problem and a grievous nuisance in the mining sector. In this study, iron (Fe(II)) removal was tested in AMD samples collected from the Enugu Okpara abandoned coal mine (Nigeria), having iron concentrations of ∼1300 mg/l. Digestion, toxicity characteristic leaching procedure (TCLP), and batch adsorption tests using coal bottom ash (BA), bentonite clay (BC), and coal fly ash (FA) were performed. Apart from elucidating the effects of adsorbent dose and initial Fe(II) concentrations on the maximum adsorption capacity (q e ) of the adsorbents, the experimental data were also fitted to well-known adsorption isotherms and kinetic models. The results from batch tests showed that the optimum adsorbent dosages for BA, BC, and FA were found to be 3, 4, and 4 g per 100 ml, respectively. Among the different adsorption isotherm models tested, the Temkin model fitted the experimental data well for Fe(II) removal. Results from kinetic analysis showed that the Fe(II) removal efficiency increased with an increase in the contact time and then remained almost constant after 30 min for the three tested adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

α and β :

Elovich constants

B :

Constant relating to heat of sorption (J/mol)

B DR :

Same as k

b T :

Temkin’s isotherm constant

C e :

Equilibrium concentration (mg/l)

C o :

Initial adsorbate concentration (mg/l)

E :

Main adsorption energy (kJ/mol)

ɛ:

Polanyi potential (potential energy)

k :

Constant relating to adsorption energy (mol2k/J2)

k 1 :

Pseudo-first-order adsorption constant

K 2 :

Pseudo-second-order adsorption constant

k f :

Freundlich constant (mg/g)

k L :

Langmuir constant (l/mg)

n :

Adsorption intensity (mg/l)

N :

Number of data points

R :

Conventional gas constant = 8.314 kJ/mol/K

R L :

Separation constant

t :

Time (min)

T :

Temperature in Kelvin (K)

Δq :

Standard deviation

q e :

Mass of material adsorbed per unit mass of adsorbent at equilibrium (mg/g)

q e,calc :

Equilibrium capacity calculated from the model (mg/g)

q e,exp :

Equilibrium capacity (mg/g) from the experimental data

q m :

Maximum adsorption capacity (mg/g)

q t :

Amount of material adsorbed at time t (mg/g)

V :

Volume of solution in the reactor (ml)

χ 2 :

Chi-squared

References

  • Abasi, C. Y., Abia, A. A., & Igwe, J. C. (2011). Adsorption of iron (III), lead (II) and cadmium (II) ions by unmodified raphia palm (Raphia hookeri) fruit endocarp. Environmental Research Journal, 5(3), 104–113.

    Article  Google Scholar 

  • Adaikpoh, E. O., Nwajei, G. E., & Ogala, J. E. (2005). Heavy metals concentrations in coal and sediments from River Ekulu in Enugu, Coal City of Nigeria. Journal of Applied Sciences and Environmental Management, 9(3), 5–8.

    Google Scholar 

  • Ademiluyi, F. T., & Ujile, A. A. (2013). Kinetics of batch adsorption of iron (II) ions from aqueous solution using activated carbon from Nigerian bamboo. International Journal of Engineering and Technology, 3(6), 623–631.

    Google Scholar 

  • Al-Anber, Z. A., & Al-Anber, M. A. S. (2008). Thermodynamics and kinetic studies of iron (III) adsorption by olive cake in a batch system. Journal of the Mexican Chemical Society, 52(2), 108–115.

    CAS  Google Scholar 

  • Al-Shahrani, S. S. (2013). Treatment of wastewater contaminated with Fe (III) by adsorption onto saudi activated bentonite. International Journal of Engineering & Technology IJET-IJENS, 13(6), 58–68.

    Google Scholar 

  • APHA, AWWA & WEF. (2005). Standard methods for the examination of water and wastewater. 21st edition. Washington, DC.

  • Arivoli, S., Marimuthu, V., & Judith, T. R. (2014). Equilibrium and thermodynamics studies on the removal of iron (III) onto activated pistia stratiotes leaves nano carbon. Research and Reviews: Journal of Chemistry, 3(1), 15–22.

    Google Scholar 

  • Asokbunyarat, V., & Annachhatre, A. P. (2015). Permeable reactive barrier for arsenic removal from arsenic groundwater. International Journal of Management and Applied Science, 1, 24–29.

    Google Scholar 

  • Asokbunyarat, V., van Hullebusch, E. D., Lens, P. N. L., & Annachhatre, A. P. (2015). Coal bottom ash as sorbing material for Fe(II), Cu(II), Mn(II), and Zn(II) removal from aqueous solutions. Water, Air, & Soil Pollution, 226(5), 1–17.

    Article  CAS  Google Scholar 

  • Benhammou, A., Yaacoubi, A., Nibou, L., & Tanouti, B. (2005). Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Journal of Colloid and Interface Science, 282(2), 320–326.

    Article  CAS  Google Scholar 

  • Boudrahem, F., Aissani-Benissad, F., & Aït-Amar, H. (2009). Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Journal of Environmental Management, 90(10), 3031–3039.

    Article  CAS  Google Scholar 

  • Dean, J. A. (1999). Lange’s handbook of chemistry (15th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Dhabab, J. M. (2012). Removal of Fe(II), Cu(II), Zn(II), and Pb(II) ions from aqueous solutions by duckweed. Journal of Oceanography and Marine Science, 2(1), 17–22.

    Google Scholar 

  • Exploring the environment, (2004). ETE, Exploring the environment; water quality; acid mine drainage. Center for Educational Technologies. Wheeling Jesuit University/NASA-supported Classroom of the Future, U.S.A.

  • Ezeigbo, H. I., & Ezeanyim, B. N. (1993). Environmental pollution from coal mining activities in the Enugu area Anambka State Nigeria. Mine Water and the Environment, 12, 53–62.

    Google Scholar 

  • Gorme, J. B., Maniquiz-Redillas, M. C., & Kim, L. H. (2015). Development of a stormwater treatment system using bottom ash as filter media. Desalination and Water Treatment, 53(11), 3118–3125.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.

    Article  CAS  Google Scholar 

  • Horsfall, M., Spiff, A. I., & Abia, A. A. (2004). Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bulletin of the Korean Chemical Society, 25(7), 969–976.

    Article  CAS  Google Scholar 

  • Jiang, J. G., Xu, X., Wang, J., Yang, S. J., & Zhang, Y. (2007). Investigation of basic properties of fly ash from urban waste incinerators in China. Journal of Environmental Sciences, 19(4), 458–463.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine remediation options: a review. Science of the Total Environment, 338, 3–14.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Goel, J., & Rajagopal, C. (2008). Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials, 153(1-2), 502–507.

    Article  CAS  Google Scholar 

  • Kavand, M., Kaghazchi, T., & Soleimani, M. (2014). Optimization of parameters for competitive adsorption of heavy metal ions (Pb2+, Ni2+, Cd2+) onto activated carbon. Korean Journal of Chemical Engineering, 31(4), 692–700.

    Article  CAS  Google Scholar 

  • Levandowski, J., & Kalkreuth, W. (2009). Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. International Journal of Coal Geology, 77(3), 269–281.

    Article  CAS  Google Scholar 

  • Mittal, J., Jhare, D., Vardhan, H., & Mittal, A. (2014). Utilization of bottom ash as a low-cost sorbent for the removal and recovery of a toxic halogen containing dye eosin yellow. Desalination and Water Treatment, 52(22), 4508–4519.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169(2), 351–359.

    Article  CAS  Google Scholar 

  • Moreno, J. C., Gómez, R., & Giraldo, L. (2010). Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal. Materials, 3, 452–466.

    Article  CAS  Google Scholar 

  • Naseem, R., & Tahir, S. S. (2001). Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982–3986.

    Article  CAS  Google Scholar 

  • Nganje, T. N., Adamu, C. I., Ugbaja, A. N., Ebieme, E., & Sikakwe, G. U. (2011). Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, Southeastern Nigeria. Arabian Journal of Geosciences, 4(1), 199–205.

    Article  CAS  Google Scholar 

  • Nidheesh, P. V., Gandhimathi, R., Ramesh, S. T., & Singh, T. S. A. (2012). Adsorption and desorption characteristics of crystal violet in bottom ash column. Journal of Urban and Environmental Engineering, 6(1), 18–29.

    Article  Google Scholar 

  • Patrick, U. A., Chinedu, U. C., & Darlington, A. (2014). Analysis of thermodynamics, kinetics and equilibrium isotherm on Fe3+/Fe2+ adsorption onto palm kernel shell activated carbon (PKSAC): a low-cost adsorbent. American Chemical Science Journal, 4(3), 298–325.

    Article  Google Scholar 

  • Polowczyk, I., Ulatowska, J., Koźlecki, T., Bastrzyk, A., & Sawiński, W. (2013). Studies on removal of boron from aqueous solution by fly ash agglomerates. Desalination, 310, 93–101.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Adil, M., Yusof, A. M., Karuzzaman, Y. B., & Ansary, R. H. (2014). Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials, 7, 3634–3650.

    Article  CAS  Google Scholar 

  • Ravichandran, T., & Arivoli, S. (2013). Adsorption of Fe (III) ions by activated calcite powder-equilibrium, kinetic and thermodynamics studies. Journal of Biomedical and Pharmaceutical Research, 2(1), 52–59.

    CAS  Google Scholar 

  • Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., Hellier, W., & Members of the Avoidance and Remediation Working Group of the Acid Drainage Technology Initiative (ADTI). (1998). Handbook of technologies for avoidance and remediation of acid mine drainage (p. 131). Morgantown: West Virginia Water Research Institute, West Virginia University.

    Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2007). Multicomponent adsorption study of metal ions onto bagasse fly ash using Taguchi’s design of experimental methodology. Industrial & Engineering Chemistry Research, 46(17), 5697–5706.

    Article  CAS  Google Scholar 

  • Stanković, N., Logar, M., Luković, J., Pantić, J., Miljević, M., Babić, B., & Mihajlović, A. R. (2011). Characterization of bentonite clay from ‘Greda’ deposit. Processing and Application of Ceramics, 5(2), 97–101.

    Article  Google Scholar 

  • Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127(1), 111–119.

    Article  CAS  Google Scholar 

  • Veli, S., & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), 226–233.

    Article  CAS  Google Scholar 

  • Velzy, C. O., Grillo, L. M. (2007). Waste-to-energy combustion in handbook of energy efficiency and renewable energy, In F. Kreith, D. Y. Goswami (Eds.), (pp. 24-31). Boca Raton, FL: CRC Press, Taylor & Francis Group.

  • Xie, J., Wang, Z., Wu, D., & Kong, H. (2014). Synthesis and properties of zeolite/hydrated iron oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water. Fuel, 116, 71–76.

    Article  CAS  Google Scholar 

  • Yeboah, N. N. N., Shearer, C. R., Burns, S. E., & Kurtis, K. E. (2014). Characterization of biomass and high carbon content coal ash for productive reuse applications. Fuel, 116, 438–447.

    Article  CAS  Google Scholar 

  • Yin, N.-H., Sivry, Y., Benedetti, M. F., Lens, P. N. L., & van Hullebusch, E. D. (2016). Application of Zn isotopes in environmental impact assessment of Zn-Pb metallurgical industries: A mini review. Applied Geochemistry, 64, 128–135.

    Article  CAS  Google Scholar 

  • Yürüm, A., Ataklı, Z. Ö. K., Sezen, M., Semiat, R., & Yürüm, Y. (2014). Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical Engineering Journal, 242, 321–332.

    Article  Google Scholar 

  • Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172, 361–368.

    Article  CAS  Google Scholar 

  • Zhao, G., Zhang, H., Fan, Q., Ren, X., Li, J., Chen, Y., & Wang, X. (2010). Sorption of copper (II) onto super-adsorbent of bentonite-polyacrylamide composites. Journal of Hazardous Materials, 173(1), 661–668.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DGIS-UNESCO-IHE Programmatic Cooperation (DUPC), Netherlands, for funding the project “Evaluation of two technologies for heavy metal removal” (Project No. D0049, EVOTEC) and the Netherlands Fellowship Programme (NFP) for providing an MSc scholarship for the joint AIT and UNESCO-IHE Master in Environmental Technologies for Sustainable Development. The authors are grateful to the School of Environment, Resources and Development (AIT, Bangkok) for providing analytical and infrastructural support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Annachhatre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orakwue, E.O., Asokbunyarat, V., Rene, E.R. et al. Adsorption of Iron(II) from Acid Mine Drainage Contaminated Groundwater Using Coal Fly Ash, Coal Bottom Ash, and Bentonite Clay. Water Air Soil Pollut 227, 74 (2016). https://doi.org/10.1007/s11270-016-2772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2772-8

Keywords

Navigation