Skip to main content
Log in

Sulfur Recovery from Wastewater Using a Micro-aerobic External Silicone Membrane Reactor (ESMR)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sulfide, found in some wastewaters and industrial off-gases, is a toxic and highly corrosive pollutant, especially in wastewater applications. Sulfide removal was studied in a new sulfide-oxidizing reactor (External Silicone Membrane Reactor—ESMR) that employs a tubular silicone rubber membrane for micro-aeration. The chemical and biological sulfide oxidation at pH 8.0, 9.0, and 10.0 were investigated. The applied velocity (V s) in the membrane was also investigated as a system control parameter. The local overall mass transfer coefficient (R) was estimated for the tubular silicone rubber membrane and had an average value of 0.153 m.h−1. Oxygen mass transfer was found to not be influenced by the applied velocity. The sulfide oxidation to sulfate could be partially avoided and the biotic tests showed larger sulfur aggregates deposited in the silicone membrane, which could easily be washed away upon flushing. By contrast, colloidal sulfur formation observed in the chemical oxidation assays was harder to separate from the liquid phase. This study reveals that the ESMR is a suitable reactor design to promote partial sulfide oxidation because it provides an adequate oxygen supply with minimized aeration costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcantara, S., Velasco, A., Munoz, A., Cid, J., Revah, S., & Razo-Flores, E. (2004). Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols. Environmental Science and Technology, 38(3), 918–923. doi:10.1021/es034527y.

    Article  CAS  Google Scholar 

  • American Public Health Association, E. A. D. A. W. W. A. W. E. F. (2005). Standard methods for the examination of water and wastewater. Washington, D.C.: APHA-AWWA-WEF.

    Google Scholar 

  • Atkison, B., & Mavituna, F. (1983). Biochemical engineering and biotechnology handbook. New York: Macmillan Publishers Ltda.

    Google Scholar 

  • Bartlett, J. K., & Skoog, D. A. (1954). Colorimetric determination of elemental sulfur in hydrocarbons. Analytical Chemistry, 26(6), 1008–1011. doi:10.1021/ac60090a014.

    Article  CAS  Google Scholar 

  • Brindle, K., & Stephenson, T. (1996). The application of membrane biological reactors for the treatment of wastewaters. Biotechnology and Bioengineering, 49(6), 601–610. doi:10.1002/(sici)1097-0290(19960320)49:6<601::aid-bit1>3.0.co;2-s.

    Article  CAS  Google Scholar 

  • Brookes, P. R., & Livingston, A. G. (1995). Aqueous-aqueous extraction of organic pollutants through tubular silicone rubber membranes. Journal of Membrane Science, 104(1–2), 119–137. doi:http://dx.doi.org/10.1016/0376-7388(95)00020-D.

  • Buisman, C., Post, R., Ijspeert, P., Geraats, G., & Lettinga, G. (1989). Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnologica, 9(3), 255–267. doi:10.1002/abio.370090313.

    Article  CAS  Google Scholar 

  • Buisman, C. J. N., Geraats, B. G., Ijspeert, P., & Lettinga, G. (1990). Optimization of sulfur production in a biotechnological sulfide-removing reactor. Biotechnology and Bioengineering, 35(1), 50–56.

    Article  CAS  Google Scholar 

  • Buisman, C. J. N., Ijspeert, P., Hof, A., Janssen, A. J. H., Tenhagen, R., & Lettinga, G. (1991). Kinetic-parameters of a mixed culture oxidizing sulfide and sulfur with oxygen. Biotechnology and Bioengineering, 38(8), 813–820.

    Article  CAS  Google Scholar 

  • Camiloti, P. R., Mockaitis, G., Domingues Rodrigues, J. A., Rissato Zamariolli Damianovic, M. H., Foresti, E., & Zaiat, M. (2013). Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. Journal of Chemical Technology and Biotechnology, 89(7), 1044–1050. doi:10.1002/jctb.4199.

    Article  Google Scholar 

  • Casey, E., Glennon, B., & Hamer, G. (1999). Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor. Biotechnology and Bioengineering, 62(2), 183–192. doi:10.1002/(sici)1097-0290(19990120)62:2<183::aid-bit8>3.0.co;2-l.

    Article  CAS  Google Scholar 

  • Chen, K. Y., & Morris, J. C. (1972). Kinetics of oxidation of aqueous sulfide by oxygen. Environmental Science and Technology, 6(6), 529–537. doi:10.1021/es60065a008.

    Article  CAS  Google Scholar 

  • Chen, C, Wang, A, Ren, N, Zhao, Q, Liu, L, Adav, SS, et al (2010) Enhancing denitrifying sulfide removal with functional strains under micro-aerobic condition. Process Biochemistry 45(6),1007–1010. doi:10.1016/j.procbio.2010.02.013.

  • Chuang, S. H., Pai, T. Y., & Horng, R. Y. (2005). Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor System. Environmental Technology, 26(9), 993–1002. doi:10.1080/09593332608618487.

    Article  CAS  Google Scholar 

  • Chuichulcherm, S., Nagpal, S., Peeva, L., & Livingston, A. (2001). Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria. Journal of Chemical Technology and Biotechnology, 76(1), 61–68. doi:10.1002/1097-4660(200101)76:1<61::aid-jctb357>3.0.co;2-o.

    Article  CAS  Google Scholar 

  • Côté, P, Bersillon, J-L, & Huyard, A (1989) Bubble-free aeration using membranes: mass transfer analysis. Journal of Membrane Science, 47(1–2), 91–106. doi:10.1016/S0376-7388(00)80862-5.

  • Díaz, I, Pérez, SI, Ferrero, EM, & Fdz-Polanco, M (2011) Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresource Technology 102(4), 3768–3775. doi:10.1016/j.biortech.2010.12.016.

  • González-Sánchez, A, & Revah, S (2007) The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium. Enzyme and Microbial Technology 40(2), 292–298. doi:10.1016/j.enzmictec.2006.04.017.

  • Houston, KS, Weinkauf, DH, & Stewart, FF (2002) Gas transport characteristics of plasma treated poly(dimethylsiloxane) and polyphosphazene membrane materials. Journal of Membrane Science 205(1–2), 103–112. doi:10.1016/S0376-7388(02)00068-6.

  • Janssen, A. J. H., Sleyster, R., Vanderkaa, C., Jochemsen, A., Bontsema, J., & Lettinga, G. (1995). Biological sulfide oxidation in a fed-batch reactor. Biotechnology and Bioengineering, 47(3), 327–333.

    Article  CAS  Google Scholar 

  • Janssen, A. J. H., Ma, S. C., Lens, P., & Lettinga, G. (1997). Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnology and Bioengineering, 53(1), 32–40.

    Article  CAS  Google Scholar 

  • Janssen, A. J. H., Lettinga, G., & de Keizer, A. (1999). Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur—colloidal and interfacial aspects of biologically produced sulphur particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 151(1–2), 389–397.

    Article  CAS  Google Scholar 

  • Jenicek, P. K., Bindzar, J., & Zabranska, J. (2010). Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Science and Technology, 62(2), 7.

    Article  Google Scholar 

  • Jensen, A. B., & Webb, C. (1995). Treatment of h2s-containing gases—a review of microbiological alternatives. Enzyme and Microbial Technology, 17(1), 2–10.

    Article  CAS  Google Scholar 

  • Kleinjan, W. E., de Keizer, A., & Janssen, A. J. H. (2005). Kinetics of the chemical oxidation of polysulfide anions in aqueous solution. Water Research, 39(17), 4093–4100. doi:10.1016/j.watres.2005.08.006.

    Article  CAS  Google Scholar 

  • Krishnakumar, B, Majumdar, S, Manilal, VB, & Haridas, A (2005) Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Research 39(4):639–647. doi:10.1016/j.watres.2004.11.015.

  • Kuenen, J. G. (1975). Colourless sulfur bacteria and their role in the sulfur cycle. Plant and Soil, 43(1–3), 49–76. doi:10.1007/bf01928476.

    Article  CAS  Google Scholar 

  • Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41–88.

    Article  CAS  Google Scholar 

  • Lohwacharin, J., & Annachhatre, A. P. (2010). Biological sulfide oxidation in an airlift bioreactor. Bioresource Technology, 101(7), 2114–2120. doi:10.1016/j.biortech.2009.10.093.

    Article  CAS  Google Scholar 

  • Millero, F. J., Hubinger, S., Fernandez, M., & Garnett, S. (1987). Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength. Environmental Science and Technology, 21(5), 439–443. doi:10.1021/es00159a003.

    Article  CAS  Google Scholar 

  • Moghanloo, G. M. M., Fatehifar, E., Saedy, S., Aghaeifar, Z., & Abbasnezhad, H. (2010). Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor. Bioresource Technology, 101(21), 8330–8335. doi:10.1016/j.biortech.2010.05.093.

    Article  CAS  Google Scholar 

  • Pokasoowan, C, Kanitchaidecha, W, K C BK, & Annachhatre, AP (2009) Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate. Journal of Environmental Science and Health, Part A 44(1), 87–98. doi:10.1080/10934520802515426.

  • Raghunath B, & Hwang ST (1992) General treatment of liquid-phase boundary layer resistance in the pervaporation of dilute aqueous organics through tubular membranes. Journal Membrane Science, 75(1–2):29–46. doi:10.1016/0376-7388(92)80004-4.

  • Robertson, L, & Kuenen, JG (2006) The Genus Thiobacillus. In: M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, & E Stackebrandt (Eds) The Prokaryotes (pp. 812–827): Springer New York.

  • Stern, S. A., Shah, V. M., & Hardy, B. J. (1987). Structure-permeability relationships in silicone polymers. Journal of Polymer Science Part B: Polymer Physics, 25(6), 1263–1298. doi:10.1002/polb.1987.090250607.

    Article  CAS  Google Scholar 

  • Steudel, R. (1996). Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Industrial and Engineering Chemistry Research, 35(4), 1417–1423. doi:10.1021/ie950558t.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Miyahara, S., & Takeishi, K. (1994). Oxygen supply method using gas-permeable film for wastewater treatment. Water Science and Technology, 28(7), 8.

    Google Scholar 

  • Tang, T. S. (1975). Mass transfer of dissolved bases through membrane tubing. Iowa City: University of Iowa.

    Google Scholar 

  • Wilderer, PA, Bräutigam, J, & Sekoulov, I (1985) Application of gas permeable membranes for auxiliary oxygenation of sequencing batch reactors. Conservation & Recycling, 8(1–2), 181–192. doi:10.1016/0361-3658(85)90035-9.

  • Wilmot, P. D., Cadee, K., Katinic, J. J., & Kavanagh, B. V. (1988). Kinetics of sulfide oxidation by dissolved oxygen. Journal Water Pollution Control Federation, 60(7), 1264–1270.

    CAS  Google Scholar 

  • Wobus, A, Ulrich, S, & Röske, I (1995) Degradation of chlorophenols by biofilms on semi-permeable membranes in two types of fixed bed reactors. Water Science Technology 32(8), 205–212. doi:10.1016/0273-1223(96)00027-3.

  • Xu, X-J, Chen, C, Wang, A-J, Fang, N, Yuan, Y, Ren, N-Q, et al (2012) Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing reactor under micro-aerobic condition. Bioresource Technology, 116(0), 517–521. doi:10.1016/j.biortech.2012.03.095.

  • Yamagiwa K, Yoshida M, Ito A, & Ohkawa A (1998) A new oxygen supply method for simultaneous organic carbon removal and nitrification by a one-stage biofilm process. Water Science Technology, 37(4–5), 117–124. doi:10.1016/S0273-1223(98)00093-6.

  • Yu H, Chen C, Ma J, Xu X, Fan R, & Wang A (2014) Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor. Journal of Environmental Sciences, 26(5), 1099–1107. doi:10.1016/S1001-0742(13)60589-6.

Download references

Acknowledgments

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process no. 2009/15984-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Camiloti.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Declaration

The authors also declare that this research did not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camiloti, P.R., Oliveira, G.H.D. & Zaiat, M. Sulfur Recovery from Wastewater Using a Micro-aerobic External Silicone Membrane Reactor (ESMR). Water Air Soil Pollut 227, 31 (2016). https://doi.org/10.1007/s11270-015-2721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2721-y

Keywords

Navigation