Skip to main content
Log in

Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

In this study, the monthly rainfall time series forecasting was investigated based on the effectiveness of the Seasonal Auto Regressive Integrated Moving Average with EXogenous variables (SARIMAX) model in the coastal area of Phaltan, taluka. Rainfall forecasting is so much helpful to crops and disaster planning and development during monsoon season. The performance of model was assessed using various statistical metrics such as coefficient of determination (R2), and root mean squared error (RMSE). In this study, we have used multi-dimensional components as inputs in the SARIMAX model for prediction of monthly rainfall. In this work, we have tested two models such as first SARIMAX model orders are (1, 0, 1) and (0, 1, 0, 12), while the second model had orders of (1, 1, 1) and (1, 1, 1, 12). The results of two models have been compared and the performance of model show that the first model outperformed on the rainfall forecasting. The RMSE and R2 performance are 54.54 and 0.91 of first model, respectively, while the second model accuracy is RMSE of 71.12 and an R2 of 0.81. Hence best SARIMAX model has been used for forecasting of monthly time series rainfall from 2020 to 2025 for study area. The results of rainfall data analysis of climatic data are valuable for understanding the variations in global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Adams SO, Bamanga MA (2020) Modelling and forecasting seasonal behavior of rainfall in Abuja, Nigeri: A SARIMA approach. Am J Math Stat 10(1):10–19

    Google Scholar 

  • Ajewole KP, Adejuwon SO, Jemilohun VG (2020) Test for stationarity on inflation rates in Nigeria using augmented dickey fuller test and Phillips-persons test. J Math 16:11–14

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723. Bibcode:1974ITAC...19..716A

    Article  Google Scholar 

  • Amjad M, Khan A, Fatima K, Ajaz O, Ali S, Main K (2023) Analysis of temperature variability, trends and prediction in the Karachi Region of Pakistan using ARIMA models. Atmosphere 14:88. https://doi.org/10.3390/atmos1401008

    Article  Google Scholar 

  • Chattopadhyay S, Chattopadhyay G (2010) Univariate modelling of summer-monsoon rainfall time series: Comparison between ARIMA and ARNN. CR Geosci 342(2):100–107

    Article  Google Scholar 

  • Chukwueloka EH, Nwosu AO (2023) Modelling and prediction of rainfall in the North-Central Region of Nigeria using ARIMA and NNETAR model. In: Egbueri JC, Ighalo JO, Pande CB (eds) Climate Change Impacts on Nigeria. Springer Climate. Climate change impacts on Nigeria. Springer Climate, Springer, Cham. https://doi.org/10.1007/978-3-031-21007-5_6

    Chapter  Google Scholar 

  • Dankwa P, Cudjoe E, Amuah EEY, Kazapoe RW, Agyemang EP (2021) Analyzing and forecasting rainfall patterns in the Manga-Bawku area, northeastern Ghana: Possible implication of climate change. Environ Chall 5:100354

    Article  Google Scholar 

  • Das P, Sachindra DA, Chanda K (2022) Machine learning-based rainfall forecasting with multiple non-linear feature selection algorithms. Water Resour Manag 36:6043–6071. https://doi.org/10.1007/s11269-022-03341-8

    Article  Google Scholar 

  • Dash Y, Mishra SK, Panigrahi BK (2018) Rainfall prediction for the Kerala state of India using artificial intelligence approaches. Comput Electr Eng 70:66–73

    Article  Google Scholar 

  • Dimri T, Ahmad S, Sharif M (2020) Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci 129(1):1–16

    Article  Google Scholar 

  • Drisya J, Sathish Kumar D (2023) Evaluation of the drought management measures in a semi-arid agricultural watershed. Environ Dev Sustain 25:811–833. https://doi.org/10.1007/s10668-021-02079-4

    Article  Google Scholar 

  • Elshewey AM, Shams MY, Elhady AM, Shohieb SM, Abdelhamid AAI, Eni D et al (2015) Seasonal ARIMA modeling and forecasting of rainfall in Warri Town, Nigeria. J Geosci Environ Prot 3(06):91

    Google Scholar 

  • Elshewey AM, Shams MY, Elhady AM, Shohieb SM, Abdelhamid AA, Ibrahim A, Tarek Z (2023) A novel WD-SARIMAX model for temperature forecasting using daily Delhi climate dataset. Sustainability 15:757. https://doi.org/10.3390/su15010757

    Article  Google Scholar 

  • Fang T, Lahdelma R (2016) Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system. Appl Energy 179:544–552. https://doi.org/10.1016/j.apenergy.2016.06.133

    Article  Google Scholar 

  • Fang Y, Wang H, Fang P, Liang B, Zheng K, Sun Q, Wang A (2023) Life cycle assessment of integrated bioelectrochemical-constructed wetland system: environmental sustainability and economic feasibility evaluation. Resour Conserv Recycl 189:106740. https://doi.org/10.1016/j.resconrec.2022.106740

  • Farajzadeh J, Fard AF, Lotfi S (2014) Modeling of monthly rainfall and runoff of Urmia lake basin using ‘“feed-forward neural network”’ and ‘“time series analysis”’ model. Water Resour Ind 7:38–48

    Article  Google Scholar 

  • Gao C, Hao M, Chen J, Gu C (2021) Simulation and design of joint distribution of rainfall and tide level in Wuchengxiyu Region, China. Urban Clim 40:101005. https://doi.org/10.1016/j.uclim.2021.101005

  • Ghaderpour E, Dadkhah H, Dabiri H, Bozzano F, Mugnozza GS, Mazzanti P (2023) "Precipitation Time Series Analysis and Forecasting for Italian Regions. Eng Proc 39(1):23. https://doi.org/10.3390/engproc2023039023

    Article  Google Scholar 

  • Ghamariadyan M, Imteaz MA (2021) Monthly rainfall forecasting using temperature and climate indices through a hybrid method in Queensland, Australia. J Hydrometeorol 22(5):1259–1273

    Google Scholar 

  • Gong S, Bai X, Luo G, Li C, Wu L, Chen F, Zhang S et al (2023) Climate change has enhanced the positive contribution of rock weathering to the major ions in riverine transport. Glob Planet Change 228:104203. https://doi.org/10.1016/j.gloplacha.2023.104203

  • Hyndman RJ, Athanasopoulos G (2018) Forecasting: Principles and practice. Monash University, Australia, OTextsTM, Melbourne

    Google Scholar 

  • Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: The forecast package for R. J Stat Softw 27(3):1–22. https://doi.org/10.18637/jss.v027.i03

  • Kabbilawsh P, Sathish Kumar D, Chithra NR (2020) Trend analysis and SARIMA forecasting of mean monthly maximum and minimum temperature data for the state of Kerala, India. Acta Geophys 68(4):1161–1174. https://doi.org/10.1007/s11600-020-00462-9

    Article  Google Scholar 

  • Kabbilawsh P, Sathish Kumar D, Chithra NR (2021) Infilling missing monthly maximum and minimum temperature dataset by EM algorithm followed by distribution based statistical assessment using eight absolute homogeneity tests. In: Jha R, Singh VP, Singh V, Roy LB, Thendiyath R (eds) Climate change impacts on water resources. Water science and technology library, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-64202-0_43

  • Kandekar VU, Pande CB, Rajesh J et al (2021) Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: A case study of Jayakwadi dam. Sustain Water Resour Manag 7:44. https://doi.org/10.1007/s40899-021-00527-7

    Article  Google Scholar 

  • Kang H (2013) The prevention and handling of the missing data. Korean J Anesthesiol 64(5):402–406. https://doi.org/10.4097/kjae.2013.64.5.402

    Article  Google Scholar 

  • Krishnakumar KN, Rao GP, Gopakumar CS (2009) Rainfall trends in 20th century over Kerala, India. Atmos Environ 43(11):1940–1944

    Article  CAS  Google Scholar 

  • Kumar N, Middey A (2023) Extreme climate index estimation and projection in association with enviro-meteorological parameters using random forest-ARIMA hybrid model over the Vidarbha region, India. Environ Monit Assess 195:380. https://doi.org/10.1007/s10661-022-10902-2

    Article  Google Scholar 

  • Lama A, Singh K, Singh H, Shekhawat R, Mishra P, Gurung B (2021) Forecasting monthly rainfall of sub-Himalayan region of India using parametric and non-parametric modelling approaches. Model Earth Syst Environ 8:837–845

    Article  Google Scholar 

  • Li J, Wang Z, Wu X, Xu C, Guo S, Chen X et al (2020) Toward monitoring short-term droughts using a novel daily scale, standardized antecedent precipitation evapotranspiration index. J Hydrometeorol 21(5):891–908. https://doi.org/10.1175/JHM-D-19-0298.1

    Article  Google Scholar 

  • Liu QY, Li DQ, Tang XS, Du W (2023a) Predictive models for seismic source parameters based on machine learning and general orthogonal regression approaches. Bull Seismol Soc Am. https://doi.org/10.1785/0120230069

    Article  Google Scholar 

  • Liu Z, Xu J, Liu M, Yin Z, Liu X, Yin L, Zheng W (2023b) Remote sensing and geostatistics in urban water-resource monitoring: a review. Mar Freshw Res. https://doi.org/10.1071/MF22167

    Article  Google Scholar 

  • Luk KC, Ball JE, Sharma A (2001) An application of artificial neural networks for rainfall forecasting. Math Comput Model 33(6–7):683–693

    Article  Google Scholar 

  • Luo J, Niu F, Lin Z, Liu M, Yin G, Gao Z et al (2022) Abrupt increase in thermokarst lakes on the central Tibetan Plateau over the last 50 years. CATENA 217:106497. https://doi.org/10.1016/j.catena.2022.106497

  • Manigandan P, Alam MS, Alharthi M, Khan U, Alagirisamy K, Pachiyappan D, Rehman A (2021) Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models. Energies 14:6021

    Article  Google Scholar 

  • Marino D, Palmieri M, Marucci A, Soraci M, Barone A, Pili S (2023) Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome. Land 12:366

    Article  Google Scholar 

  • McLeod AI, Li WK (1983) Diagnostic checking ARMA time series models using squared-residual autocorrelations. J Time Ser Anal 4(4):269–273

    Article  Google Scholar 

  • Murthy KN, Saravana R, Kumar V, K. V. (2018) Modeling and forecasting rainfall patterns of southwest monsoons in northeast India as a SARIMA process. Meteorol Atmos Phys 130(1):99–106

    Article  Google Scholar 

  • Nair A, Ajith Joseph K, Nair KS (2014) Spatio-temporal analysis of rainfall trends over a maritime state (Kerala) of India during the last 100 years. Atmos Environ 88:123–132. https://doi.org/10.1016/j.atmosenv.2014.01.061

    Article  CAS  Google Scholar 

  • Narayanan P, Basistha A, Sarkar S, Kamna S (2013) Trend analysis and ARIMA modelling of pre-monsoon rainfall data for western India. C R Geosci 345(1):22–27. https://doi.org/10.1016/j.crte.2012.12.001

    Article  Google Scholar 

  • Nie S, Mo S, Gao T, Yan B, Shen P, Kashif M, Jiang C et al (2023) Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. Sci Total Environ 862:160930. https://doi.org/10.1016/j.scitotenv.2022.160930

  • Nikhil Raj PP, Azeez PA (2012) Trend analysis of rainfall in Bharathapuzha River basin, Kerala, India. Int J Climatol 32(4):533–539. https://doi.org/10.1002/joc.2283

    Article  Google Scholar 

  • Pande CB (2020) Sustainable watershed development planning. In: Sustainable watershed development. SpringerBriefs in Water Science and Technology, Springer, Cham. https://doi.org/10.1007/978-3-030-47244-3_4

    Chapter  Google Scholar 

  • Pande CB, Al-Ansari N, Kushwaha NL, Srivastava A, Noor R, Kumar M, Moharir KN, Elbeltagi A (2022) Forecasting of SPI and meteorological drought based on the artificial neural network and M5P Model tree. Land 11(11):2040. https://doi.org/10.3390/land11112040

    Article  Google Scholar 

  • Polisetty K, Ebenezer AY (2021) An empirical study on rainfall patterns of monsoon season in the north-west India using time series models. J Stat Manag Syst 24(3):559–572

    Google Scholar 

  • Praveen B, Talukdar S, Mahato S, Mondal J, Sharma P, Islam AR et al (2020) Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep 10(1):1–21

    Article  Google Scholar 

  • Ramesh K, Iyengar R (2016) New ANN model for forecasting Indian monsoon rainfall. Nat Hazards

    Google Scholar 

  • Rui S, Zhou Z, Jostad HP, Wang L, Guo Z (2023) Numerical prediction of potential 3-dimensional seabed trench profiles considering complex motions of mooring line. Appl Ocean Res 139:103704. https://doi.org/10.1016/j.apor.2023.103704

  • Shen ZY, Ban WC (2023) Machine learning model combined with CEEMDAN algorithm for monthly precipitation prediction. Earth Sci Inform. https://doi.org/10.1007/s12145-023-01011-w

    Article  Google Scholar 

  • Singh P (2018) Rainfall and financial forecasting using fuzzy time series and neural networks based model. Int J Mach Learn Cybern 9(3):491–506

    Article  Google Scholar 

  • Singh P, Borah B (2013) Indian summer monsoon rainfall prediction using artificial neural network. Stoch Env Res Risk Assess 27(7):1585–1599

    Article  Google Scholar 

  • Tarek Z (2023) (2023) A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset. Sustainability 15:757. https://doi.org/10.3390/su15010757

    Article  Google Scholar 

  • Thamilselvan R, Gothai E, Dharani MK, Aravinthan B, Dharaneeshwaran S, JayaSuriyaa D (2023). Forecasting Temperature and Rainfall for Crop Cultivation with Classification of Ground Water Level, 10128514. In 2023 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, pp 1–9. https://doi.org/10.1109/ICCCI56745.2023

    Chapter  Google Scholar 

  • Tian H, Huang N, Niu Z, Qin Y, Pei J, Wang J et al (2019) Mapping winter crops in China with multi-source satellite imagery and phenology-based algorithm. Remote Sens (Basel) 11(7):820. https://doi.org/10.3390/rs11070820

    Article  Google Scholar 

  • Tian H, Pei J, Huang J, Li X, Wang J, Zhou B, Wang L et al (2020) Garlic and winter wheat identification based on active and passive satellite imagery and the Google earth engine in northern China. Remote Sens (Basel) 12(21):3539. https://doi.org/10.3390/rs12213539

    Article  Google Scholar 

  • Unnikrishnan P, Jothiprakash V (2020) Hybrid SSA-ARIMA-ANN Model for Forecasting Daily Rainfall. Water Resour Manag 34:3609–3623. https://doi.org/10.1007/s11269-020-02638-w

    Article  Google Scholar 

  • Wei M, You Xy (2022) Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning. Water Resour Manag 36:4003–4018. https://doi.org/10.1007/s11269-022-03218-w

    Article  Google Scholar 

  • Wu X, Guo S, Qian S, Wang Z, Lai C, Li J, Liu P et al (2022) Long-range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. Int J Climatol 42(15):8024–8039. https://doi.org/10.1002/joc.7690

    Article  Google Scholar 

  • Xie X, Xie B, Cheng J, Chu Q, Dooling T (2021) A simple Monte Carlo method for estimating the chance of a cyclone impact. Nat Hazards 107(3):2573–2582. https://doi.org/10.1007/s11069-021-04505-2

    Article  Google Scholar 

  • Xu J, Lan W, Ren C, Zhou X, Wang S, Yuan J (2021) Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization. Cold Reg Sci Technol 189:103335. https://doi.org/10.1016/j.coldregions.2021.103335

  • Xu Z, Li X, Li J, Xue Y, Jiang S, Liu L, Sun Q et al (2022) characteristics of source rocks and genetic origins of natural gas in deep formations, Gudian depression, Songliao Basin, NE China. ACS Earth Space Chem 6(7):1750–1771. https://doi.org/10.1021/acsearthspacechem.2c00065

    Article  CAS  Google Scholar 

  • Yin L, Wang L, Li J, Lu S, Tian J, Yin Z, Zheng W et al (2023) YOLOV4_CSPBi: Enhanced land target detection model. Land 12(9):1813. https://doi.org/10.3390/land12091813

    Article  Google Scholar 

  • Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, Xi H et al (2021) Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth’s Future 9(5):e1938E–e2020E. https://doi.org/10.1029/2020EF001938

    Article  Google Scholar 

  • Zhao M, Zhou Y, Li X, Cheng W, Zhou C, Ma, T.,... Huang, K. (2020) Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens Environ 248:111980. https://doi.org/10.1016/j.rse.2020.111980

  • Zhou G, Deng R, Zhou X, Long S, Li W, Lin G, Li X et al (2021a) Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geosci Remote Sens Lett 1–5. https://doi.org/10.1109/LGRS.2021.3107438

  • Zhou G, Zhang R, Huang S (2021b) Generalized buffering algorithm. IEEE Access 9:27140–27157. https://doi.org/10.1109/ACCESS.2021.3057719

    Article  Google Scholar 

  • Zhou G, Li W, Zhou X, Tan Y, Lin G, Li X, Deng R (2021c) An innovative echo detection system with STM32 gated and PMT adjustable gain for airborne LiDAR. Int J Remote Sens 42(24):9187–9211. https://doi.org/10.1080/01431161.2021.1975844

    Article  Google Scholar 

  • Zhu X, Xu Z, Liu Z, Liu M, Yin Z, Yin L, Zheng W et al (2022) Impact of dam construction on precipitation: a regional perspective. Mar Freshw Res. https://doi.org/10.1071/MF22135

    Article  Google Scholar 

Download references

Acknowledgements

Author Sudhir Kumar Singh express sincere thanks to Coordinator, K. Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad and DST-FIST for providing infrastructural facilities for the work.

Funding

No specific funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Shahenaz Mulla: Writing – original draft, Formal Analysis, Field data collection, Creation and Interactive visualization of figures and methodology chart, Writing - review & editing etc., Chaitanya B. Pande: Conceptualization, writing – original draft, Investigation, developed ML algorithms, creation and Interactive visualization of charts of results, Software, Analyzing and Drafting results and analysis, Statistical Analysis, Writing -review & editing., Sudhir K. Singh: Supervision, writing – original draft, Writing -review & editing, Formal Analysis.

Corresponding author

Correspondence to Chaitanya B. Pande.

Ethics declarations

Ethical Approval

Human or animal rights not applicable.

Consent to Participate

Not applicable.

Consent to Publish

The manuscript is approved by all authors for publication.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, S., Pande, C.B. & Singh, S.K. Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model. Water Resour Manage 38, 1825–1846 (2024). https://doi.org/10.1007/s11269-024-03756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-024-03756-5

Keywords

Navigation