Skip to main content
Log in

Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The Soil Conservation Service Curve Number (SCS-CN) method developed by the USDA-Soil Conservation Service (SCS, 1972) is widely used for the estimation of direct runoff for a given rainfall event from small agricultural watersheds. The initial soil moisture plays an important role in re-structuring of the SCS-CN method and enables us to prevent unreasonable sudden jump in runoff estimation and this has prompted the concept of soil moisture accounting (SMA) procedure to develop improved SCS-CN based models. Applying the concept of SMA procedure and changed parameterization, Michel et al. Water Resour Res 41(2):1–6 (2005) developed an improved SCS-CN model (MSCS-CN), which could be thought of an improvement over the existing SCS-CN method; however, their model still inherits several conceptual limitations and inconsistencies. Therefore, in this study an attempt is made to propose an improved SMA based SCS-CN-inspired model (MMSCS-CN) model incorporating a continuous function for initial soil moisture and test its suitability over the MSCS-CN and SCS-CN model using a large dataset from US watersheds. Using, Nash and Sutcliffe efficiency (NSE) and root mean square error (RMSE) of these models, the overall performance is further evaluated using rank grading system, and it is found that the MMSCS-CN scores highest mark (95; overall rank I) followed by MSCS-CN with 61 (overall rank II), and SCS-CN model with 51 mark (overall rank III) out of the maximum 105. This study shows that the proposed MMSCS-CN model has several advantages and performs better than the MSCS-CN and the existing SCS-CN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajmal M, Waseem M, Ahn J, Kim T (2015) Improved runoff estimation using event-based rainfall-runoff models. Water Resour Manag 29(6):1995–2010

    Article  Google Scholar 

  • Babu PS, Mishra SK (2012) Improved SCS-CN–inspired model. J Hydrol Eng 17(11):1164–1172

    Article  Google Scholar 

  • Bhunya PK, Jain SK, Singh PK, Mishra SK (2010) A simple conceptual model of sediment yield. Water Resour Manag 24(8):1697–1716

    Article  Google Scholar 

  • Bonta JV (1997) Determination of watershed curve number using derived distributions. J Irrig Drain Eng 123(1):234–238

    Article  Google Scholar 

  • Chen C (1982) An evaluation of the mathematics and physical significance of the soil conservation service curve number procedure for estimating runoff volume. In: Singh VP (ed) Proc. int. symp. on ‘rainfall-runoff relationship’. Water Resources Publications, Littleton, pp 387–418

    Google Scholar 

  • Choi J-Y, Engel BA, Chung HW (2002) Daily streamflow modeling and assessment based on the curve-number technique. Hydrol Process 16:3131–3150

    Article  Google Scholar 

  • Chung W, Wang I, Wang R (2010) Theory based SCS-CN method and its applications. J Hydrol Eng 15(12):1045–1058

    Article  Google Scholar 

  • De Michele C, Salvadori G (2002) On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. J Hydrol 262:245–258

    Article  Google Scholar 

  • EI-Sadek A, Feyen J, Berlamont J (2001) Comparison of models for computing drainage discharge. J Irrig Drain Eng 127(6):363–369

    Article  Google Scholar 

  • Fentie B, Yu B, Silburn MD, Ciesiolka CAA (2002) Evaluation of eight different methods to predict hillslope runoff rates for a grazing catchment in Australia. J Hydrol 261:102–114

    Article  Google Scholar 

  • Garen D, Moore DS (2005) Curve number hydrology in water quality modeling: use, abuse, and future directions. J Am Water Resour Assoc 41(2):377–388

    Article  Google Scholar 

  • Hawkins RH (1978). Runoff curve numbers with varying site moisture. J. Irrig. Drain. Div. ASCE 104 (IR4), 389–398

  • Hawkins RH, Woodward DE, Jiang R (2001). Investigation of the runoff curve number abstraction ratio. Paper presented at USDA-NRCS Hydraulic Engineering Workshop, Tucson, Arizona

  • Hjelmfelt AT Jr, Kramer LA, Burwell RE (1982) Curve numbers as random variable. Proc, int. symp. on rainfall-runoff modeling. Water Resource Publication, Littleton, pp 365–373

    Google Scholar 

  • Jain MK, Mishra SK, Babu S, Venugopal K (2006) On the Ia–S relation of the SCS-CN method. Nord Hydrol 37(3):261–275

    Article  Google Scholar 

  • Kadam AK, Kale SS, Pande NN, Pawar NJ, Sankhua RN (2012) Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of western India, using SCS-CN method. Water Resour Manag 26:2537–2554

    Article  Google Scholar 

  • Knisel WG (1980) CREAMS: a field-scale model for chemical, runoff and erosion from agricultural management systems. Conservation Research Report No. 26, South East Area, US Department of Agriculture, Washington, DC

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • McCuen RH (2002) Approach to confidence interval estimation for curve numbers. J Hydrol Eng 7(1):43–48

    Article  Google Scholar 

  • McCuen RH, Knight Z, Cutter AG (2006) Evaluation of the Nash–Sutcliffe efficiency index. J Hydrol Eng ASCE 11(6):597–602

    Article  Google Scholar 

  • Michel C, Vazken A, Charles P (2005) Soil conservation service curve number method: how to mend among soil moisture accounting procedure? Water Resour Res 41(2):1–6

    Google Scholar 

  • Miller N, Cronshey R (1989) Runoff curve numbers, the next step. Proc. int. conf. on channel flow and catchment runoff. University of Virginia, Charlottesville

    Google Scholar 

  • Mishra SK, Singh VP (1999) Another look at the SCS-CN method. J Hydrol Eng 4(3):257–264

    Article  Google Scholar 

  • Mishra SK, Singh VP (2002) SCS-CN method: part I: derivation of SCS-CN based models. Acta Geophys Pol 50(3):457–477

    Google Scholar 

  • Mishra SK, Singh VP (2003) Soil Conservation Service Curve Number (SCS-CN) methodology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mishra SK, Singh VP (2004) Long-term hydrologic simulation based on the Soil Conservation Service curve number. Hydrol Process 18:1291–1313

    Article  Google Scholar 

  • Mishra SK, Singh VP (2006) A re-look at NEH-4 curve number data and antecedent moisture condition criteria. Hydrol Process 20:2755–2768

    Article  Google Scholar 

  • Mishra SK, Jain MK, Singh VP (2004a) Evaluation of the SCS-CN based model incorporating antecedent moisture. Water Resour Manag 18:567–589

    Article  Google Scholar 

  • Mishra SK, Sansalone JJ, Singh VP (2004b) Partitioning analog for metal elements in urban rainfall-runoff overland flow using the soil conservation service curve number concept. J Environ Eng ASCE 130(2):145–154

    Article  Google Scholar 

  • Mishra SK, Sahu RK, Eldho TI, Jain MK (2006a) An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology. Water Resour Manag 20:643–660

    Article  Google Scholar 

  • Mishra SK, Tyagi JV, Singh VP, Singh R (2006b) SCS-CN-based modeling of sediment yield. J Hydrol 324:301–322

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, Part I-A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Ojha CSP (2012) Simulating turbidity removal at a river bank filtration site in India using SCS-CN approach. J Hydrol Eng 17(11):1240–1244

    Article  Google Scholar 

  • Ponce VM, Hawkins RH (1996) Runoff curve number: has it reached maturity? J Hydrol Eng 1(1):11–19

    Article  Google Scholar 

  • Sahu RK, Mishra SK, Eldho TI (2010) An improved AMC-coupled runoff curve number model. Hydrol Process 21(21):2834–2839

    Article  Google Scholar 

  • SCS (1972) National engineering handbook. Supplement A, Section 4, Chapter 10. Soil Conservation Service, USDA, Washington

    Google Scholar 

  • Shi Z-H, Chen L-D, Fang N-F, Qin D-F, Cai, C-F (2009) Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, pp. 1–7

  • Singh PK, Bhunya PK, Mishra SK, Chaube UC (2008) A sediment graph model based on SCS-CN method. J Hydrol 349:244–255

    Article  Google Scholar 

  • Singh PK, Gaur ML, Mishra SK, Rawat SS (2010) An updated hydrological review on recent advancements in soil conservation service curve-number technique. J Water Clim Chang 1(2):118–134

    Article  Google Scholar 

  • Singh PK, Yaduwanshi BK, Patel S, Ray S (2013) SCS-CN based quantification of potential of rooftop catchments and computation of ASRC for rainwater harvesting. Water Resour Manag 27(7):2001–2012

    Article  Google Scholar 

  • Soulis KX, Valiantzas JD (2013) Identification of the SCS-CN parameter spatial distribution using rainfall-runoff data in heterogeneous watersheds. Water Resour Manag 27(6):1737–1749

    Article  Google Scholar 

  • Williams JR, LaSeur V (1976) Water yield model using SCS curve numbers. J Hydraul Eng 102(9):1241–1253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Singh.

Appendices

Appendix A

Equations (14a) & (14b) are re-written here as:

$$ \mathrm{V}={\mathrm{V}}_0+\mathrm{P}-\left[\frac{\left(\mathrm{P}+{\mathrm{V}}_0\right)\left(\mathrm{P}-\mathrm{I}\mathrm{a}\right)}{\mathrm{P}+\mathrm{S}+{\mathrm{V}}_0}\right] $$
(a1)
$$ \mathrm{q}=\mathrm{p}\left[\frac{\left(\mathrm{P}+{\mathrm{V}}_0+S\right)\left(2\mathrm{P}+{\mathrm{V}}_0-\mathrm{I}\mathrm{a}\right)-\left(\mathrm{P}+{\mathrm{V}}_0\right)\left(\mathrm{P}-\mathrm{I}\mathrm{a}\right)}{{\left(\mathrm{P}+\mathrm{S}+{\mathrm{V}}_0\right)}^2}\right] $$
(a2)

P can be obtained from Eq. (a1) as:

$$ \mathrm{P}=\frac{\left[{\mathrm{V}}_0\mathrm{I}\mathrm{a}-\left({\mathrm{V}}_0+\mathrm{S}\right)\left(\mathrm{V}-{\mathrm{V}}_0\right)\right]}{\left(\mathrm{V}-{\mathrm{V}}_0\right)-\left(\mathrm{S}+\mathrm{I}\mathrm{a}\right)} $$
(a3)

Using Eq. (a3), the different terms of Eq. (a2) can be written as:

$$ \left(\mathrm{P}+{\mathrm{V}}_0+\mathrm{S}\right)=\frac{\mathrm{S}\left(\mathrm{S}+\mathrm{S}\mathrm{a}\right)}{\mathrm{S}+\mathrm{S}\mathrm{a}-\mathrm{V}}, $$
(a4)
$$ \left(2\mathrm{P}+{\mathrm{V}}_0-{\mathrm{I}}_{\mathrm{a}}\right)=\frac{\mathrm{V}\left(\mathrm{S}+\mathrm{S}\mathrm{a}\right)-\mathrm{S}\mathrm{a}\left(\mathrm{S}+\mathrm{S}\mathrm{a}\right)}{\mathrm{S}+\mathrm{S}\mathrm{a}-\mathrm{V}}, $$
(a5)
$$ \left(\mathrm{P}+{\mathrm{V}}_0\right)=\frac{\mathrm{S}\mathrm{V}}{\mathrm{S}+\mathrm{S}\mathrm{a}-\mathrm{V}}, $$
(a6)
$$ \left(\mathrm{P}-\mathrm{I}\mathrm{a}\right)=\frac{\left(\mathrm{S}+\mathrm{S}\mathrm{a}\right)\left(\mathrm{V}-\mathrm{S}\mathrm{a}\right)}{\mathrm{S}+\mathrm{S}\mathrm{a}-\mathrm{V}}, $$
(a7)
$$ \mathrm{and}\kern2em {\left(\mathrm{P}+\mathrm{S}+{\mathrm{V}}_0\right)}^2=\frac{{\mathrm{S}}^2{\left(\mathrm{S}+\mathrm{S}\mathrm{a}\right)}^2}{{\left(\mathrm{S}+\mathrm{S}\mathrm{a}-\mathrm{V}\right)}^2} $$
(a8)

Using Eqs. (a4)–(a8) into Eq. (a2) and then simplifying results into

$$ \mathrm{q}=\mathrm{p}\left[\frac{\mathrm{VS}+\left(\mathrm{V}-\mathrm{S}\mathrm{a}\right)\left({\mathrm{S}}_{\mathrm{b}}-\mathrm{V}\right)}{\mathrm{S}\mathrm{Sb}}\right] $$
(a9)

This is the desired expression of q and p, i.e., Eq. (15).

Appendix B

Coupling of Eqs. (13) and Eq. (15) results into

$$ \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{p}\left[1-\frac{\mathrm{VS}+\left(\mathrm{V}-\mathrm{S}\mathrm{a}\right)\left({\mathrm{S}}_{\mathrm{b}}-\mathrm{V}\right)}{\mathrm{S}\mathrm{Sb}}\right] $$
(b1)

After re-arranging, Eq. (b1) is expressible as:

$$ \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{p}\left[1-\frac{\mathrm{V}}{{\mathrm{S}}_{\mathrm{b}}}+\left(\frac{\mathrm{V}}{{\mathrm{S}}_{\mathrm{b}}}-\frac{{\mathrm{S}}_{\mathrm{a}}}{{\mathrm{S}}_{\mathrm{b}}}\right)\left(1-\frac{\mathrm{V}}{{\mathrm{S}}_{\mathrm{b}}}\right)/\left(1-\frac{{\mathrm{S}}_{\mathrm{a}}}{{\mathrm{S}}_{\mathrm{b}}}\right)\right] $$
(b2)

or

$$ \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{p}\left[\frac{{\left({\mathrm{S}}_{\mathrm{b}}-\mathrm{V}\right)}^2}{\mathrm{S}\mathrm{Sb}}\right] $$
(b3)

Again, re-arranging Eq. (b3) and applying appropriate lower and upper limits of integration results into

$$ {\displaystyle \underset{\mathrm{V}=\mathrm{V}0}{\overset{\mathrm{V}}{\int }}\frac{\mathrm{dV}}{{\left({\mathrm{S}}_{\mathrm{b}}-\mathrm{V}\right)}^2}}={\displaystyle \underset{\mathrm{t}=0}{\overset{\mathrm{t}}{\int }}\frac{\mathrm{pdt}}{\mathrm{S}\mathrm{Sb}}} $$
(b4)

On integrating Eq. (b4), we get

$$ \frac{1}{\left({\mathrm{S}}_{\mathrm{b}}-\mathrm{V}\right)}-\frac{1}{\left({\mathrm{S}}_{\mathrm{b}}-{\mathrm{V}}_0\right)}=\frac{\mathrm{P}}{\mathrm{S}\mathrm{Sb}} $$
(b5)

Now, substituting V from Eq. (12) into Eq. (b5) and rearranging leads to

$$ \frac{\left(\mathrm{P}-\mathrm{Q}\right)}{\left[\left({\mathrm{S}}_{\mathrm{b}}-{\mathrm{V}}_0\right)-\left(\mathrm{P}-\mathrm{Q}\right)\right]\left({\mathrm{S}}_{\mathrm{b}}-{\mathrm{V}}_0\right)}=\frac{\mathrm{P}}{\mathrm{S}\mathrm{Sb}} $$
(b6)

Equation (b6) can be further simplified as:

$$ \mathrm{Q}=\mathrm{P}\left(1-\frac{{\left({\mathrm{S}}_{\mathrm{b}}-{\mathrm{V}}_0\right)}^2}{\mathrm{S}\mathrm{Sb}+\mathrm{P}\left({\mathrm{S}}_{\mathrm{b}}-{\mathrm{V}}_0\right)}\right) $$
(b7)

This is the desired expression of Q and P, i.e., Eq. (19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Mishra, S.K., Berndtsson, R. et al. Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation. Water Resour Manage 29, 4111–4127 (2015). https://doi.org/10.1007/s11269-015-1048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1048-1

Keywords

Navigation