Skip to main content
Log in

Multiview Differential Geometry of Curves

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The field of multiple view geometry has seen tremendous progress in reconstruction and calibration due to methods for extracting reliable point features and key developments in projective geometry. Point features, however, are not available in certain applications and result in unstructured point cloud reconstructions. General image curves provide a complementary feature when keypoints are scarce, and result in 3D curve geometry, but face challenges not addressed by the usual projective geometry of points and algebraic curves. We address these challenges by laying the theoretical foundations of a framework based on the differential geometry of general curves, including stationary curves, occluding contours, and non-rigid curves, aiming at stereo correspondence, camera estimation (including calibration, pose, and multiview epipolar geometry), and 3D reconstruction given measured image curves. By gathering previous results into a cohesive theory, novel results were made possible, yielding three contributions. First, we derive the differential geometry of an image curve (tangent, curvature, curvature derivative) from that of the underlying space curve (tangent, curvature, curvature derivative, torsion). Second, we derive the differential geometry of a space curve from that of two corresponding image curves. Third, the differential motion of an image curve is derived from camera motion and the differential geometry and motion of the space curve. The availability of such a theory enables novel curve-based multiview reconstruction and camera estimation systems to augment existing point-based approaches. This theory has been used to reconstruct a “3D curve sketch”, to determine camera pose from local curve geometry, and tracking; other developments are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., & Szeliski, R. (2009). Building Rome in a day. In Proceedings of the IEEE international conference on computer vision. IEEE Computer Society.

  • Arnold, R., & Binford, T. (1980). Geometric constraints in stereo vision. In Proceedings of the SPIE image processing for missile guidance, Vol. 238 (pp 281–292). San Diego, CA.

  • Astrom, K., & Heyden, A. (1996). Multilinear constraints in the infinitesimal-time case. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 833–838). San Francisco: IEEE Computer Society Press.

  • Astrom, K., Cipolla, R., & Giblin, P. (1999). Generalised epipolar constraints. International Journal of Computer Vision, 33(1), 51–72.

    Article  Google Scholar 

  • Åström, K., & Heyden, A. (1998). Continuous time matching constraints for image streams. International Journal of Computer Vision, 28(1), 85–96.

    Article  Google Scholar 

  • Astrom, K., & Kahl, F. (1999). Motion estimation in image sequences using the deformation of apparent contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(2), 114–127.

    Article  Google Scholar 

  • Ayache, N., & Lustman, L. (1987). Fast and reliable passive trinocular stereovision. In Proceedings of the \(1^{st}\) International conference on computer vision (pp. 422–427).

  • Baatz, G., Saurer, O., Köser, K., & Pollefeys, M. (2012). Large scale visual geo-localization of images in mountainous terrain. In Proceedings of the 12th European conference on computer vision (Vol. Part II, pp. 517–530). Berlin: Springer.

  • Baumela, L., Agapito, L., Bustos, P., & Reid, I. (2000). Motion estimation using the differential epipolar equation. In Proceedings of the 15th international conference on pattern recognition 3 (pp. 848–851).

  • Berthilsson, R., Åström, K., & Heyden, A. (2001). Reconstruction of general curves, using factorization and bundle adjustment. International Journal of Computer Vision, 41(3), 171–182.

    Article  MATH  Google Scholar 

  • Brodskỳ, T., & Fermüller, C. (2002). Self-Calibration from Image Derivatives. International Journal of Computer Vision, 48(2), 91–114.

    Article  MATH  Google Scholar 

  • Brodský, T., Fermüller, C., & Aloimonos, Y. (2000). Structure from motion: Beyond the epipolar constraint. International Journal of Computer Vision, 37(3), 231–258.

    Article  MATH  Google Scholar 

  • Brooks, M. J., Chojnacki, W., & Baumela, L. (1997). Determining the egomotion of an uncalibrated camera from instantaneous optical flow. Journal of the Optical Society of America A, 14(10), 2670–2677.

  • Calakli, F., Ulusoy, A.O., Restrepo, M.I., Taubin, G., & Mundy, J.L. (2012). High resolution surface reconstruction from multi-view aerial imagery. In 3DIMPVT’12 (pp 25–32). IEEE.

  • Carceroni, R. (2001). Recovering non-rigid 3D motion, shape and reflectance from multi-view image sequences: A differential-geometric approach. PhD thesis, University of Rochester.

  • Carceroni, R., & Kutulakos, K. (1999). Toward recovering shape and motion of 3D curves from multi-view image sequences. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 23–25). Fort Collins: IEEE Computer Society Press.

  • Chen, T.Y., & Klette, R. (2014). Animated non-photorealistic rendering in multiple styles. In Image and video technology–PSIVT 2013 workshops (pp 12–23). Springer.

  • Cipolla, R. (1991) Active visual inference of surface shape. Ph.D. dissertation, Univesity of Oxford.

  • Cipolla, R., Åström, K., & Giblin, P.J. (1995). Motion from the frontier of curved surfaces. In Proceedings of the IEEE international conference on computer vision. (pp 269–275). Boston: IEEE Computer Society Press.

  • Cipolla, R., & Blake, A. (1992). Surface shape from the deformation of apparent contours. International Journal of Computer Vision, 9(2), 83–112.

    Article  Google Scholar 

  • Cipolla, R., & Giblin, P. (1999). Visual motion of curves and surfaces. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Cipolla, R., & Zisserman, A. (1992). Qualitative surface shape from deformation of image curves. International Journal of Computer Vision, 8(1), 53–69.

    Article  Google Scholar 

  • Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., & Singh M (2009) How well do line drawings depict shape? In Proceedings of the SIGGRAPH ACM Transactions on Graphics.

  • Diskin, Y., & Asari, V. (2015). Dense point-cloud representation of a scene using monocular vision. Journal of Electronic Imaging, 24(2), 023003.

    Article  Google Scholar 

  • do Carmo, M. P. (1976). Differential geometry of curves and surfaces. New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Dornaika, F., & Sappa, A. (2006). 3D Motion from Image Derivatives Using the Least Trimmed Square Regression? (Vol. 4153, p. 76)., Lecture Notes in Computer Science Berlin: Springer.

    Google Scholar 

  • Fabbri, R. (2010) Multiview differential geometry in application to computer vision. Ph.D. dissertation, Division Of Engineering, Brown University, Providence, RI, 02912.

  • Fabbri, R., & Kimia, B.B. (2010). 3D curve sketch: Flexible curve-based stereo reconstruction and calibration. In Proceedings of the IEEE conference on computer vision and pattern recognition. San Francisco: IEEE Computer Society Press.

  • Fabbri, R., Kimia, B. B., & Giblin, P. J. (2012). Camera pose estimation using first-order curve differential geometry. In Proceedings of European conference on computer vision. Lecture Notes in Computer Science (pp. 231–244). Springer.

  • Fathi, H., Dai, F., & Lourakis, M. (2015). Automated as-built 3D reconstruction of civil infrastructure using computer vision: Achievements, opportunities, and challenges. Advanced Engineering Informatics.

  • Faugeras, O. (1990). Computer Vision — ECCV 90: First European Conference on Computer Vision Antibes, France, April 23–27, 1990. In Proceedings, chap On the motion of 3D curves and its relationship to optical flow, Heidelberg. (pp.105–117). Berlin: Springer.

  • Faugeras, O., & Papadopoulo, T. (1992). Geometric invariance in computer vision. chap Disambiguating Stereo Matches with Spatio-temporal Surfaces (pp 310–331). Cambridge: MIT Press.

  • Faugeras, O., & Papadopoulo, T. (1993). A theory of the motion fields of curves. International Journal of Computer Vision, 10(2), 125–156.

    Article  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Furukawa, Y., & Ponce, J. (2007). Accurate, dense, and robust multi-view stereopsis. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society.

  • Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1362–1376.

    Article  Google Scholar 

  • Furukawa, Y., Sethi, A., Ponce, J., & Kriegman, D. J. (2006). Robust structure and motion from outlines of smooth curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 302–315.

    Article  Google Scholar 

  • Giblin, P. J., & Weiss, R. S. (1995). Epipolar curves on surfaces. Image and Vision Computing, 13(1), 33–44.

    Article  Google Scholar 

  • Goesele, M., Snavely, N., Curless, B., Hoppe, H., & Seitz, S. (2007). Multi-view stereo for community photo collections. In Proceedings of the IEEE International Conference in Computer Vision (pp 1–8).

  • Grimson, W. E. L. (1981). A Computer Implementation of a Theory of Human Stereo Vision. Royal Society of London Philosophical Transactions Series B, 292, 217–253.

    Article  Google Scholar 

  • Guo, Y., Kumar, N., Narayanan, M., & Kimia, B. (2014). A multi-stage approach to curve extraction. In CVPR’14.

  • Habbecke, M., & Kobbelt, L. (2007). A surface-growing approach to multi-view stereo reconstruction. In IEEE computer society conference on computer vision and pattern recognition (pp. 1–8).

  • Harris, C., & Stephens, M. (1988). A combined edge and corner detector. In Alvey vision conference (pp 189–192).

  • Hartley, R.I. (1995). A linear method for reconstruction from lines and points. In Proceedings of the IEEE international conference on computer vision (pp 882–887). Boston: IEEE Computer Society.

  • Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. New York: cambridge university press.

    MATH  Google Scholar 

  • Heeger, D. J., & Jepson, A. D. (1992). Subspace methods for recovering rigid motion i: algorithm and implementation. International Journal of Computer Vision, 7(2), 95–117.

    Article  Google Scholar 

  • Heinly, J., Schönberger, J.L., Dunn, E., & Frahm, J.M. (2015). Reconstructing the world in six days. In Proceedings of the computer vision and pattern recognition.

  • Hernández Esteban, C., & Schmitt, F. (2004). Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding, 96(3), 367–392.

    Article  Google Scholar 

  • Hernandez, C., Schmitt, F., & Cipolla, R. (2007). Silhouette coherence for camera calibration under circular motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 343–349.

    Article  Google Scholar 

  • Heyden, A. (2006). Differential-Algebraic Multiview Constraints. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06) (Vol. 01, pp 159–162). Washington, DC: IEEE Computer Society.

  • ICCV2007 (2007). 11th IEEE International conference on computer vision (ICCV 2007), 14–20 October 2007 Rio de Janeiro: IEEE Computer Society.

  • Jain, V. (2009) Motion segmentation using differential geometry of curves and edges. Ph.D. dissertation, Division Of Engineering, Brown University, Providence, RI, 02912.

  • Jain, V., Kimia, B.B., & Mundy, J.L. (2007a). Background modeling based on subpixel edges. In IEEE international conference on image processing (vol IV, pp 321–324). San Antonio: IEEE.

  • Jain, V., Kimia, B. B., & Mundy, J. L. (2007b). Segregation of moving objects using elastic matching. Computer Vision and Image Understanding, 108, 230–242.

    Article  Google Scholar 

  • Kahl, F., & Heyden, A. (1998). Using conic correspondence in two images to estimate the epipolar geometry. In Proceedings of the IEEE international conference on computer vision (p 761). Bombay: IEEE Computer Society Press.

  • Kahl, F., & Heyden, A. (2001). Euclidean reconstruction and auto-calibration from continuous motion. In Proceedings of the IEEE international conference on computer vision (vol 2). Vancouver: IEEE Computer Society Press.

  • Kaminski, J. Y., & Shashua, A. (2004). Multiple view geometry of general algebraic curves. International Journal of Computer Vision, 56(3), 195–219.

    Article  Google Scholar 

  • Kanatani, K. (1993). 3D interpretation of optical flow by renormalization. International Journal of Computer Vision, 11(3), 267–282.

    Article  Google Scholar 

  • Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. In SGP ’06: Proceedings of the fourth Eurographics symposium on Geometry processing (pp 61–70). Aire-la-Ville: Eurographics Association.

  • Koenderink, J., van Doorn, A., & Wagemans, J. (2013). SfS? not likely... i-Perception, 4(5), 299.

  • Kowdle, A., Batra, D., Chen, W.C., & Chen, T. (2012). imodel: Interactive co-segmentation for object of interest 3D modeling. In Proceedings of the 11th European conference on trends and topics in computer vision (Vol. Part II, pp 211–224). Springer.

  • Kuang, Y., & Åström, K. (2013). Pose estimation with unknown focal length using points, directions and lines. In International conference on computer vision (pp 529–536). IEEE.

  • Kuang, Y., Oskarsson, M., & Åström, K. (2014). Revisiting trifocal tensor estimation using lines. In 22nd International conference on pattern recognition (ICPR), 2014 (pp 2419–2423). IEEE.

  • Kunsberg, B., & Zucker, S.W. (2014) Why shading matters along contours. In Neuromathematics of vision, Lecture Notes in Morphogenesis (pp 107–129). Springer.

  • Lebeda, K., Hadfield, S., & Bowden, R. (2014). 2D or not 2D: Bridging the gap between tracking and structure from motion. In Proceedings of ACCV.

  • Li, G., & Zucker, S.W. (2003). A differential geometrical model for contour-based stereo correspondence. In Proceedings of the IEEE workshop on variational, geometric, and level set methods in computer vision, Nice, France.

  • Lin, W. Y., Tan, G. C., & Cheong, L. F. (2009). When discrete meets differential. International Journal of Computer Vision, 86(1), 87–110.

    Article  MathSciNet  Google Scholar 

  • Litvinov, V., Yu, S., & Lhuillier, M. (2012). 2-manifold reconstruction from sparse visual features. In 2012 International conference on 3D imaging (IC3D) (pp 1–8). IEEE.

  • Li, G., & Zucker, S. W. (2006). Contextual inference in contour-based stereo correspondence. International Journal of Computer Vision, 69(1), 59–75.

    Article  MathSciNet  Google Scholar 

  • Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135.

    Article  Google Scholar 

  • Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings of the Royal Society of London B: Biological Sciences, 208(1173), 385–397.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. S. (2004). An invitation to 3D vision. New York: Springer.

    Book  MATH  Google Scholar 

  • Mattingly, W. A., Chariker, J. H., Paris, R., jen Chang, D., & Pani, J.R., (2015). 3D modeling of branching structures for anatomical instruction. Journal of Visual Languages & Computing, 29, 54–62.

  • Maybank, S. (1992). Theory of reconstruction from image motion. Secaucus: Springer.

    MATH  Google Scholar 

  • Mendonça, P. R. S., Wong, K. Y. K., & Cipolla, R. (2001). Epipolar geometry from profiles under circular motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 604–616.

    Article  Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2004). Scale and affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.

    Article  Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.

    Article  Google Scholar 

  • Moravec, H.P. (1977). Towards automatic visual obstacle avoidance. In Proceedings of the 5th international joint conference on artificial intelligence (p 584).

  • Moreels, P., & Perona, P. (2007). Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision, 73(3), 263–284.

    Article  Google Scholar 

  • Ohta, Y., & Kanade, T. (1985). Stereo by intra- and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2), 139–154.

    Article  Google Scholar 

  • Papadopoulo, T. (1996). Motion analysis of 3D rigid curves from monocular image sequences. Technical Report RR–2779, PhD Thesis, INRIA.

  • Papadopoulo, T., & Faugeras, O.D. (1996). Computing structure and motion of general 3D curves from monocular sequences of perspective images. In Proceedings of the 4th European conference on computer vision (pp 696–708). London: Springer.

  • Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., et al. (2004). Visual modeling with a hand-held camera. International Journal of Computer Vision, 59(3), 207–232.

    Article  Google Scholar 

  • Ponce, J., & Genc, Y. (1998). Epipolar geometry and linear subspace methods: a new approach to weak calibration. International Journal of Computer Vision, 28(3), 223–243.

    Article  Google Scholar 

  • Porrill, J., & Pollard, S. (1991). Curve matching and stereo calibration. Image and Vision Computing, 9(1), 45–50.

    Article  Google Scholar 

  • Pötsch, K., & Pinz, A. (2011). 3D geometric shape modeling by ‘3D contour cloud reconstruction from stereo videos. In 16th computer vision winter workshop, Citeseer (p. 99).

  • Rao, D., Chung, S.J., & Hutchinson S. (2012). CurveSLAM: An approach for vision-based navigation without point features. In IEEE/RSJ intelligent robots and systems (IROS) (pp 4198–4204).

  • Restrepo, M. I., Ulusoy, A. O., & Mundy, J. L. (2014). Evaluation of feature-based 3-D registration of probabilistic volumetric scenes. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 1–18.

    Article  Google Scholar 

  • Reyes, L., & Bayro Corrochano, E. (2005). The projective reconstruction of points, lines, quadrics, plane conics and degenerate quadrics using uncalibrated cameras. Image and Vision Computing, 23(8), 693–706.

    Article  Google Scholar 

  • Robert, L., & Faugeras, O.D. (1991). Curve-based stereo: figural continuity and curvature. In Proceedings of computer vision and pattern recognition (pp 57–62).

  • Schmid, C., & Zisserman, A. (2000). The geometry and matching of lines and curves over multiple views. International Journal of Computer Vision, 40(3), 199–233.

    Article  MATH  Google Scholar 

  • Schneevoigt, T., Schroers, C., & Weickert, J. (2014). A dense pipeline for 3D reconstruction from image sequences. In Pattern Recognition (pp 629–640). Springer.

  • Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp 519–528).

  • Shashua, A. (1994). Trilinearity in visual recognition by alignment. In Proceedings of the third European conference on Computer vision (pp 479–484). Secaucus: Springer.

  • Sherman, D., & Peleg, S. (1990). Stereo by incremental matching of contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(11), 1102–1106.

    Article  Google Scholar 

  • Shinozuka, Y., & Saito, H. (2014). Sharing 3D object with multiple clients via networks using vision-based 3D object tracking. In Proceedings of the 2014 virtual reality international conference VRIC ’14 (pp 34:1–34:4). New York: ACM.

  • Simoes, F., Almeida, M., Pinheiro, M., & dos Anjos, R. (2012). Challenges in 3D reconstruction from images for difficult large-scale objects. In XVI Symposium on virtual and augmented reality (pp.74–83).

  • Sinha, S.N., Pollefeys, M., & McMillan, L. (2004). Camera network calibration from dynamic silhouettes. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp 195–202). IEEE Computer Society.

  • Spetsakis, M., & Aloimonos, J. Y. (1991). A multi-frame approach to visual motion perception. International Journal of Computer Vision, 6(3), 245–255.

    Article  Google Scholar 

  • Stewénius, H., Engels, C., & Nistér, D. (2007). An efficient minimal solution for infinitesimal camera motion. In IEEE Conference on computer vision and pattern recognition, 2007. CVPR’07 (pp 1–8).

  • Tamrakar, A. (2008). Image contour extraction using geometric consistency. Ph.D. dissertation, Division Of Engineering, Brown University, Providence, RI, 02912.

  • Tamrakar, A., & Kimia, B.B. (2007). No grouping left behind: From edges to curve fragments. In ICCV2007.

  • Teney, D., & Piater, J. (2012) Sampling-based multiview reconstruction without correspondences for 3D edges. In Proceedings (pp 160–167). Washington, DC: IEEE.

  • Tian, T.Y., Tomasi, C., & Heeger, D.J. (1996). Comparison of approaches to egomotion computation. In Proceedings CVPR’96, 1996 IEEE computer society conference on computer vision and pattern recognition (pp 315–320). IEEE.

  • Triggs, B. (1999). Differential Matching Constraints. In Proceedings of the IEEE international conference on computer vision, KerKyra: IEEE Computer Society Press.

  • Usumezbas, A., Fabbri, R., & Kimia, B.B. (2016). From multiview image curves to 3D drawings. In Proceedings of the European conference on computer vision. Springer. (submitted).

  • Valgaerts, L., Bruhn, A., Mainberger, M., & Weickert, J. (2012). Dense versus sparse approaches for estimating the fundamental matrix. International Journal of Computer Vision, 96(2), 212–234.

    Article  MathSciNet  MATH  Google Scholar 

  • van den Hengel, A. (2000). Robust estimation of structure from motion in the uncalibrated case. PhD thesis, Adelaide University.

  • van den Hengel, A., Chojnacki, W., & Brooks, M. (2007). Determining the Translational Speed of a Camera from Time-Varying Optical Flow (Vol. 3417, p. 190)., Lecture Notes in Computer Science Berlin: Springer.

    Google Scholar 

  • Viéville, T., & Faugeras, O.D. (1995). Motion analysis with a camera with unknown, and possibly varying intrinsic parameters. In Proceedings of the fifth international conference on computer vision (pp 750–756). IEEE.

  • Vieville, T., & Faugeras, O. (1996). The First Order Expansion of Motion Equations in the Uncalibrated Case. Computer Vision and Image Understanding, 64(1), 128–146.

    Article  Google Scholar 

  • Wang, R., Choi, J., & Medioni, G. (2014). 3D modeling from wide baseline range scans using contour coherence. In IEEE Conference on computer vision and pattern recognition (CVPR) (pp 4018–4025).

  • Waxman, A. M., & Ullman, S. (1985). Surface structure and three-dimensional motion from image flow kinematics. International Journal of Robotics Research, 4(3), 72–94.

    Article  Google Scholar 

  • Wong, K. Y., & Cipolla, R. (2004). Reconstruction of sculpture from its profiles with unknown camera positions. IEEE Transactions on Image Processing, 13(3), 381–9.

    Article  Google Scholar 

  • Wong, K. Y. K., Mendonça, P. R. S., & Cipolla, R. (2001). Head model acquisition from silhouettes. In C. Arcelli, L. Cordella, & G. S. di Baja (Eds.), IWVF (pp. 787–796). Capri, Italy: Springer.

  • Yi Ma, S.S., & Koseck, Jana. (1998). Motion recovery from image sequences: Discrete viewpoint vs. differential viewpoint. In Proceedings of European conference on computer vision, Lecture Notes in Computer Science (vol 1407, p. 337). Springer.

  • Zhang, L. (2013). Line primitives and their applications in geometric computer vision. PhD thesis, Department of Computer Science, Univ.

  • Zhuang, X., & Haralick, R.M. (1984). Rigid body motion and the optic flow image. In Proceedings of the first conference on artificial intelligence applications (pp 366–375). IEEE Computer Society.

  • Zucker, S. (2014). Stereo, shading, and surfaces: Curvature constraints couple neural computations. Proceedings of the IEEE, 102(5), 812–829.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of FAPERJ/Brazil E25/2014/204167, UERJ/Brazil Prociencia 2014-2017, and NSF awards 1116140 and 1319914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Fabbri.

Additional information

Communicated by Cordelia Schmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, R., Kimia, B.B. Multiview Differential Geometry of Curves. Int J Comput Vis 120, 324–346 (2016). https://doi.org/10.1007/s11263-016-0912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0912-7

Keywords

Navigation