Skip to main content
Log in

3-D interpretation of optical flow by renormalization

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This article studies 3-D interpretation of optical flow induced by a general camera motion relative to a surface of general shape. First, we describe, using the “image sphere representation,” an analytical procedure that yields an exact solution when the data are exact: we solve theepipolar equation written in terms of theessential parameters and thetwisted optical flow. Introducing a simple model of noise, we then show that the solution is “statistically biased.” In order to remove the statistical bias, we propose an algorithm calledrenormalization, which automatically adjusts to unknown image noise. A brief discussion is also given to thecritical surface that yields ambiguous 3-D interpretations and the use of theimage plane representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Adiv, Determining three-dimensional motion and structure from optical flow generated by several moving objects,IEEE Trans. Patt. Anal. Mach. Intell. 7:384–401, 1985.

    Google Scholar 

  2. A.R. Bruss and B.K.P. Horn, Passive navigation,Comput. Vis. Graph. Image Process. 21:3–20, 1983.

    Google Scholar 

  3. K. Daniilidis and H.-H. Nagel, Analytical results on error sensitivity of motion estimation from two views,Image Vis. Comput. 8:287–303, 1990.

    Google Scholar 

  4. L.S. Dreschler and H.-H. Nagel, Volumetric model and 3-D trajectory of a moving car dervied from monocular TV-frame sequences of a street scene,Comput. Graph. Image Process. 20:199–228, 1982.

    Google Scholar 

  5. D.J. Heeger and A.D. Jepson, Subspace methods for recovering rigid motion I: Algorithm and implementation,Intern. J. Comput. Vis. 7:95–117, 1992.

    Google Scholar 

  6. B.K.P. Horn, Motion fields are hardly ever ambiguous,Intern. J. Comput. Vis. 1:259–274, 1987.

    Google Scholar 

  7. B.K.P. Horn, Relative orientation,Intern. J. Comput. Vis. 4:59–78, 1990.

    Google Scholar 

  8. T.S. Huang and O.D. Faugeras, Some properties of the E matrix in two-view motion estimation,IEEE Trans. Patt. Anal. Mach. Intell. 11:1310–1312, 1989.

    Google Scholar 

  9. K. Kanatani,Group-Theoretical Methods in Image Understanding, Springer: Berlin, 1990.

    Google Scholar 

  10. K. Kanatani, Computational projective geometry,Comput. Vis. Graph. Image Process. 54:333–348, 1991.

    Google Scholar 

  11. K. Kanatani,Geometric Computation for Machine Vision, Oxford University Press: Oxford, 1993.

    Google Scholar 

  12. K. Kanatani, Unbiased estimation and statistical analysis of 3-D rigid motion from two views,IEEE Trans. Patt. Anal. Mach. Intell. 15:37–50, 1993.

    Google Scholar 

  13. K. Kanatani, Renormalization for unbiased estimation,Proc. 4th Intern. Conf. Comput. Vis., May 1993, Berlin, pp. 599–606.

  14. K. Kanatani, Statistical bias for conic fitting and renormalization,IEEE Trans. Patt. Anal. Mach. Intell. (to appear).

  15. H.C. Longuet-Higgins and K. Prazdny, The interpretation of a moving retinal image,Proc. Roy. Soc. London B-208,: 385–397, 1980.

    Google Scholar 

  16. H.C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections,Nature 293(10):133–135, 1981.

    Google Scholar 

  17. S. Maybank, The angular velocity associated with the optical flowfield arising from motion through rigid environment,Proc. Roy. Soc. London. A 401:317–326, 1985.

    Google Scholar 

  18. H.C. Longuet-Higgins, Multiple interpretations of a pair of images of a surface,Proc. Roy. Soc. London A 418:1–15, 1988.

    Google Scholar 

  19. S.J. Maybank, Ambiguity in reconstruction from image correspondences,Image Vis. Comput. 9:93–99, 1991.

    Google Scholar 

  20. S. Negahdaripour, Critical surface pairs and triplets,Intern. J. Comput. Vis. 3:293–312, 1989.

    Google Scholar 

  21. S. Negahdaripour, Multiple interpretation of the shape and motion of objects from two perspective images,IEEE Trans. Patt. Anal. Mach. Intell. 12:1025–1030, 1990.

    Google Scholar 

  22. K. Prazdny, Determining the instantaneous direction of motion from optical flow generated by a curvilinearly moving observer,Comput. Graph. Image Process. 17:238–248, 1981.

    Google Scholar 

  23. J.H. Reiger and D.T. Lawton, Processing differential image motion,J. Opt. Soc. Amer. A 2:165–175, 1984.

    Google Scholar 

  24. M. Subbarao, Interpretation of image flow: Rigid curved surfaces in motion,Intern. J. Comput. Vis. 2:77–96, 1988.

    Google Scholar 

  25. N. Tagawa, T. Toriu, and T. Endoh, Closed method for reconstructing the 3-dimensional rigid motion,IEICE Technical Report, IE90-108/PRU90-139, 1991, pp. 23–29 (in Japanese).

  26. N. Tagawa, T. Toriu, T. Endoh, Y. Ikeda, and T. Moriya, Optimization of 3-D rigid motion estimation from optical flow,IEICE Technical Report, IE92-136/PRU92-159, 1993, pp. 25–32 (in Japanese).

  27. N. Tagawa, T. Toriu, and T. Endoh, Un-biased linear algorithm for recovering three-dimensional motion from optical flow,IEICE Trans. Infor. Sys. (to appear).

  28. R.Y. Tsai and T.S. Huang, Uniqueness and estimation for three-dimensional motion parameters of rigid objects with curved surfaces,IEEE Trans. Patt. Anal. Mach. Intell. 6:13–27, 1984.

    Google Scholar 

  29. Y. Yasumoto and G. Medioni, Robust estimation of three-dimensional motion parameters from a sequence of image frames using regularization,IEEE Trans. Patt. Anal. Mach. Intell. 8:464–471, 1986.

    Google Scholar 

  30. A.M. Waxman, B. Kamgar-Parsi, and M. Subbarao, Closed-form solutions to image flow equations for 3D structure and motion,Intern. J. Comput. Vis. 1:239–258, 1987.

    Google Scholar 

  31. J. Weng, T.S. Huang, and N. Ahuja, Motion and structure from two perspective views: Algorithms, error analysis, and error estimation,IEEE Trans. Patt. Anal. Mach. Intell. 11:451–467, 1989.

    Google Scholar 

  32. X. Zhuang, T.S. Huang, N. Ahuja, and R.M. Haralick, A simplified linear optical flow-motion algorithm,Comput. Vis. Graphics Image Process. 21:3–20, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanatani, K. 3-D interpretation of optical flow by renormalization. Int J Comput Vision 11, 267–282 (1993). https://doi.org/10.1007/BF01469345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01469345

Keywords

Navigation