Skip to main content

Advertisement

Log in

SOX9 negatively regulates the RLR antiviral signaling by targeting MAVS

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Mitochondrial virus-induced signal adaptor (MAVS), also known as VISA, IPS-1, and Cardif, is a crucial adaptor protein in the RIG-I-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes viral dsRNA and further transfers it to mitochondria, where it binds to MAVS through its CARD domain, generating a series of signal cascades. Transduction through this signaling cascade leads to phosphorylation and nuclear translocation of interferon regulatory factor 3/7 (IRF3/IRF7) and activation of NF-κB, which ultimately produces type I interferon (IFN) and proinflammatory cytokines. Here, our experiments demonstrated that overexpression of SRY-related high-mobility group protein 9 (SOX9) significantly inhibited Sendai virus (SeV)-induced and MAVS-mediated activation of the IFN-β promoter and ISRE. However, knocking out the expression of SOX9 in cells promoted SeV-induced IFN-β promoter and ISRE activation. Further studies have shown that SOX9 interacts with MAVS and targets MAVS to inhibit the association of MAVS-TRAF2, thereby inhibiting MAVS-mediated TRAF2 ubiquitination. Taken together, these results indicate that SOX9 downregulates IFN-β expression and antiviral signal transduction by targeting MAVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  2. Tan X et al (2018) Detection of microbial infections through innate immune sensing of nucleic acids. Annu Rev Microbiol 72:447–478. https://doi.org/10.1146/annurev-micro-102215-095605

    Article  CAS  PubMed  Google Scholar 

  3. Chow KT, Gale M Jr, Loo YM (2018) RIG-I and other RNA sensors in antiviral immunity. Annu Rev Immunol 36:667–694. https://doi.org/10.1146/annurev-immunol-042617-053309

    Article  CAS  PubMed  Google Scholar 

  4. Berke IC, Li Y, Modis Y (2013) Structural basis of innate immune recognition of viral RNA. Cell Microbiol 15(3):386–394. https://doi.org/10.1111/cmi.12061

    Article  CAS  PubMed  Google Scholar 

  5. Hu MM, Shu HB (2018) Cytoplasmic mechanisms of recognition and defense of microbial nucleic acids. Annu Rev Cell Dev Biol 34:357–379. https://doi.org/10.1146/annurev-cellbio-100617-062903

    Article  CAS  PubMed  Google Scholar 

  6. Satoh T et al (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107(4):1512–1517. https://doi.org/10.1073/pnas.0912986107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venkataraman T et al (2007) Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178(10):6444–6455. https://doi.org/10.4049/jimmunol.178.10.6444

    Article  CAS  PubMed  Google Scholar 

  8. Wu B, Hur S (2015) How RIG-I like receptors activate MAVS. Curr Opin Virol 12:91–98. https://doi.org/10.1016/j.coviro.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu MM et al (2017) Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J Exp Med 214(4):973–989. https://doi.org/10.1084/jem.20161015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Q, Shu HB (2020) Deciphering the pathways to antiviral innate immunity and inflammation. Adv Immunol 145:1–36. https://doi.org/10.1016/bs.ai.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  11. Gack MU et al (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446(7138):916–920. https://doi.org/10.1038/nature05732

    Article  CAS  PubMed  Google Scholar 

  12. Oshiumi H et al (2009) Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284(2):807–817. https://doi.org/10.1074/jbc.M804259200

    Article  CAS  PubMed  Google Scholar 

  13. Yan J et al (2014) TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol 6(2):154–163. https://doi.org/10.1093/jmcb/mju005

    Article  CAS  PubMed  Google Scholar 

  14. Kell AM, Gale M Jr (2015) RIG-I in RNA virus recognition. Virology 479–480:110–121. https://doi.org/10.1016/j.virol.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  15. Reikine S, Nguyen JB, Modis Y (2014) Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5:342. https://doi.org/10.3389/fimmu.2014.00342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu LG et al (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740. https://doi.org/10.1016/j.molcel.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  17. Xu LG et al (2012) VISA is required for B cell expression of TLR7. J Immunol 188(1):248–258. https://doi.org/10.4049/jimmunol.1100918

    Article  CAS  PubMed  Google Scholar 

  18. Hou F et al (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461. https://doi.org/10.1016/j.cell.2011.06.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin CH et al (2001) A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol Cell 8(3):581–590. https://doi.org/10.1016/s1097-2765(01)00333-1

    Article  CAS  PubMed  Google Scholar 

  20. Fang R et al (2017) MAVS activates TBK1 and IKKepsilon through TRAFs in NEMO dependent and independent manner. PLoS Pathog 13(11):e1006720. https://doi.org/10.1371/journal.ppat.1006720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saha SK et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25(14):3257–3263. https://doi.org/10.1038/sj.emboj.7601220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu S et al (2013) MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2:e00785. https://doi.org/10.7554/eLife.00785

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pineda G, Ea CK, Chen ZJ (2007) Ubiquitination and TRAF signaling. Adv Exp Med Biol 597:80–92. https://doi.org/10.1007/978-0-387-70630-6_7

    Article  PubMed  Google Scholar 

  24. Liu B, Gao C (2018) Regulation of MAVS activation through post-translational modifications. Curr Opin Immunol 50:75–81. https://doi.org/10.1016/j.coi.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  25. Xie T et al (2019) RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes. Biochem Biophys Res Commun 508(3):667–674. https://doi.org/10.1016/j.bbrc.2018.11.203

    Article  CAS  PubMed  Google Scholar 

  26. Li J et al (2020) SNX5 inhibits RLR-mediated antiviral signaling by targeting RIG-I-VISA signalosome. Biochem Biophys Res Commun 522(4):889–896. https://doi.org/10.1016/j.bbrc.2019.11.121

    Article  CAS  PubMed  Google Scholar 

  27. Ling T et al (2018) TARBP2 negatively regulates IFN-beta production and innate antiviral response by targeting MAVS. Mol Immunol 104:1–10. https://doi.org/10.1016/j.molimm.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  28. He TS et al (2018) HAUS8 regulates RLRVISA antiviral signaling positively by targeting VISA. Mol Med Rep 18(2):2458–2466. https://doi.org/10.3892/mmr.2018.9171

    Article  CAS  PubMed  Google Scholar 

  29. Ran FA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joung J et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12(4):828–863. https://doi.org/10.1038/nprot.2017.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shalem O et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  32. Yang H et al (2020) SOX9 represses hepatitis B virus replication through binding to HBV EnhII/Cp and inhibiting the promoter activity. Antiviral Res 177:104761. https://doi.org/10.1016/j.antiviral.2020.104761

    Article  CAS  PubMed  Google Scholar 

  33. Zhu W et al (2019) TRAF3IP3 mediates the recruitment of TRAF3 to MAVS for antiviral innate immunity. EMBO. https://doi.org/10.15252/embj.2019102075

    Article  Google Scholar 

  34. Jana S et al (2020) SOX9: The master regulator of cell fate in breast cancer. Biochem Pharmacol 174:113789. https://doi.org/10.1016/j.bcp.2019.113789

    Article  CAS  PubMed  Google Scholar 

  35. Panda M, Tripathi SK, Biswal BK (2021) SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim Biophys Acta Rev Cancer 1875(2):188517. https://doi.org/10.1016/j.bbcan.2021.188517

    Article  CAS  PubMed  Google Scholar 

  36. Ren Z et al (2020) Regulation of MAVS expression and signaling function in the antiviral innate immune response. Front Immunol 11:1030. https://doi.org/10.3389/fimmu.2020.01030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen T et al (2018) Sec13 is a positive regulator of VISA-mediated antiviral signaling. Virus Genes 54(4):514–526. https://doi.org/10.1007/s11262-018-1581-0

    Article  CAS  PubMed  Google Scholar 

  38. Wagner T et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79(6):1111–1120. https://doi.org/10.1016/0092-8674(94)90041-8

    Article  CAS  PubMed  Google Scholar 

  39. Chen H et al (2017) Expression and therapeutic potential of SOX9 in chordoma. Clin Cancer Res 23(17):5176–5186. https://doi.org/10.1158/1078-0432.CCR-17-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan X et al (2018) SOX9 expression decreases survival of patients with intrahepatic cholangiocarcinoma by conferring chemoresistance. Br J Cancer 119(11):1358–1366. https://doi.org/10.1038/s41416-018-0338-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oshima M et al (2018) Virus-like infection induces human beta cell dedifferentiation JCI. Insight. https://doi.org/10.1172/jci.insight.97732

    Article  Google Scholar 

  42. Aleman A et al (2008) Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 98(2):466–473. https://doi.org/10.1038/sj.bjc.6604143

    Article  CAS  PubMed  Google Scholar 

  43. Cheng PF et al (2015) Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biol 16:42. https://doi.org/10.1186/s13059-015-0594-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Passeron T et al (2009) Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest 119(4):954–963. https://doi.org/10.1172/JCI34015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang HY, Lian P, Zheng PS (2015) SOX9, a potential tumor suppressor in cervical cancer, transactivates p21WAF1/CIP1 and suppresses cervical tumor growth. Oncotarget 6(24):20711–22. https://doi.org/10.18632/oncotarget.4133

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Hong-Bing Shu (Medical Research Institute, Wuhan University) for providing plasmids and other reagents. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 81971502, 82060298).

Author information

Authors and Affiliations

Authors

Contributions

LX designed the research. XJ performed the experiments. LX and XJ did data analysis and discussion. XJ and LX wrote the manuscript.

Corresponding author

Correspondence to Liang-Guo Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Joachim Jakob Bugert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Xu, LG. SOX9 negatively regulates the RLR antiviral signaling by targeting MAVS. Virus Genes 58, 122–132 (2022). https://doi.org/10.1007/s11262-022-01886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01886-9

Keywords

Navigation