Skip to main content
Log in

Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Avian osteoblasts have been isolated particularly from chicken embryo, but data about other functional tissue sources of adult avian osteoblast precursors are missing. The method of preparation of pigeon osteoblasts is described in this study. We demonstrate that pigeon cancellous bone derived osteoblasts have particular proliferative capacity in vitro in comparison to mammalian species and developed endogenous ALP. Calcium deposits formation in vitro was confirmed by alizarin red staining. Only a few studies have attempted to investigate bone grafting and treatment of bone loss in birds. Lack of autologous bone grafts in birds has prompted investigation into the use of avian xenografts for bone augmentation. Here we present a method of xenografting of ostrich demineralised cancellous bone scaffold seeded with allogeneic adult pigeon osteoblasts. Ostrich demineralised cancellous bone scaffold supported proliferation of pigeon osteoblasts during two weeks of co - cultivation in vitro. Scanning electron microscopy demonstrated homogeneous adult pigeon osteoblasts attachment and distribution on the surface of xenogeneic ostrich demineralised cancellous bone. Our preliminary in vitro results indicate that demineralised cancellous bone from ostrich tibia could provide an effective biological support for growth and proliferation of allogeneic osteoblasts derived from cancellous bone of pigeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bigham-Sadegh A, Karimi I, Alebouye M, Shafie-Sarvestani Z, Oryan A (2013) Evaluation of bone healing in canine tibial defects filled with cortical autograft, commercial-DBM, calf fetal DBM, omentum and omentum-calf fetal DBM. J Vet Sci 14:337–343

    Article  PubMed Central  PubMed  Google Scholar 

  • Bruder SP, Caplan AI (1989) First bone formation and the dissection of an osteogenic lineage in the embryonic chick tibia is revealed by monoclonal antibodies against osteoblasts. Bone 10:359–375

    Article  CAS  PubMed  Google Scholar 

  • De Boever S, Croubels S, Demeyere K, Lambrecht B, De Backer P, Meyer E (2010) Flow cytometric differentiation of avian leukocytes and analysis of their intracellular cytokine expression. Avian Pathol 39:41–46

    Article  PubMed  Google Scholar 

  • Dupoirieux L (1999) Ostrich eggshell as a bone substitute: a preliminary report of its biological behaviour in animals – a possibility in facial reconstructive surgery. Brit J Oral Max Surg 37:467–471

    Article  CAS  Google Scholar 

  • Ethier AL, Braune BM, Scheuhammer AM, Bond DE (2007) Comparison of lead residues among avian bones. Environ Pollut 145:915–919

    Article  CAS  PubMed  Google Scholar 

  • Gay CV, Lloyd QP, Gilman VR (1994) Characteristics and culture of osteoblasts derived from avian long bone. In Vitro Cell Dev Biol Anim 30:379–383

    Article  Google Scholar 

  • Groeneveld EH, Burger EH (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142:9–21

    Article  CAS  PubMed  Google Scholar 

  • Gromošová S, Rosocha J, Horňák P, Magin R, Harvanová D, Cibur P, Raši R (2009) Assessment of the proliferation of human mesenchymal stromal cells in the presence of human demineralised bone matrix. Biologia 64:1247–1251

    Article  Google Scholar 

  • Jalila A, Redig PT, Wallace LJ et al (2001) The efficacy of differentsources of avian demineralized bone matrix (ADBM) on bone neogenesis after intramuscular implantation in domestic pigeons (Columba livia). Proc. 6th European Association of AvianVeterinarians, Munich, pp 50–54

    Google Scholar 

  • Jalila A, Redig PT, Wallace LJ, Ogema TR, Bechtold JE, Kidder L (2004) The effect of chicken, pigeon, and turkey demineralised bone matrix (DBM) implanted in ulnar defects fixed with the intramedullary-external skeletal fixator (IM-ESF) tie-in in pigeons (Columba livia): histological evaluations. Med J Malaysia 59:125–126

    PubMed  Google Scholar 

  • Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P (2003) Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials 24:649–654

    Article  CAS  PubMed  Google Scholar 

  • Lovric V, Chen D, Yu Y, Oliver RA, Genin F, Walsh WR (2012) Effects of demineralised bone matrix on tendon-bone healing in an intra-articular rodent model. Am J Sports Med 40:2365–2374

    Article  PubMed  Google Scholar 

  • Luan Y, Praul CA, Gay CV (2000) Confocal imaging and timing of secretion of matrixproteins by osteoblasts derived from avian long bone. Comp Biochem Physiol A Mol Integr Physiol 126:213–221

    CAS  PubMed  Google Scholar 

  • Mathews KG, Danova NA, Newman H, Barnes HJ, Phillips L (2003) Ratite Cancellous Xenograft: Effects on Avian Fracture Healing. Vet Comp Orthop Traumatol 16:50–58

    Google Scholar 

  • Mauney JR, Jaquiéry C, Volloch V, Heberer M, Martin I, Kaplan DL (2005) In vitro and in vivo evaluation of differentially demineralised cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Schanbacher FL, McCauley LK, Weckmann MT, Capen CC, Rosol TJ (1996) In vitro model of parathyroid hormone-related protein secretion from mammary cells isolated from lactating cows. Domest Anim Endocrinol 13:399–410

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, Lee CS (2008) Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A 87:203–214

    Article  PubMed  Google Scholar 

  • Rabie AB, Wong RW, Hägg U (2000) Composite autogenous bone and demineralised bone matrices used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg 38:565–570

    Article  CAS  PubMed  Google Scholar 

  • Ramp WK, Lenz LG, Kaysinger KK (1994) Medium pH modulates matrix, mineral, and energy metabolism in cultured chick bones and osteoblast-like cells. Bone Miner 24:59–73

    Article  CAS  PubMed  Google Scholar 

  • Reuther T, Rohmann D, Scheer M, Kübler AC (2005) Osteoblast viability and differentiation with Me2SO as cryoprotectant compared to osteoblasts from fresh human iliac cancellous bone. Cryobiology 51:311–321

    Article  CAS  PubMed  Google Scholar 

  • Reza Sanaei M, Abu J, Nazari M, MZ AB, Allaudin ZN (2013) Qualitative and quantitative evaluation of avian demineralised bone matrix in heterotopic beds. Vet Surg 42:963–970

    Article  CAS  PubMed  Google Scholar 

  • Rougraff BT, Kling TJ (2002) Treatment of active unicameral bone cysts with percutaneous injection of demineralised bone matrix and autogenous bone marrow. J Bone Joint Surg Am 84:921–929

    PubMed  Google Scholar 

  • Sanaei MR, Abu J, Nazari M, Faiz NM, Bakar MZ, Allaudin ZN (2011) Heterotopic implantation of autologous bone marrow in rock pigeons (Columba livia): possible applications in avian bone grafting. J Avian Med Surg 25:247–253

    Article  PubMed  Google Scholar 

  • Sawada Y, Hokugo A, Yang Y, Kamitani M, Matsuda S, Mao T, Lei D, Chen F, IsekiT MS (2011) A novel hydroxyapatite ceramic bone substitute transformed by ostrich cancellous bone: characterisation and evaluations of bone regeneration activity. J Biomed Mater Res B Appl Biomater 98:217–222

    Article  PubMed  Google Scholar 

  • Scott DM, Kent GN, Cohn DV (1980) Collagen synthesis in cultured osteoblast-like cells. Arch Biochem Biophys 201:384–391

    Article  CAS  PubMed  Google Scholar 

  • Skjodt H, Russel G (1994) Bone cell biology and the regulation of bone turnover. In: Gowen M (ed) Cytokines and bone metabolism. CRC Press, Boca Raton, pp 1–70

    Google Scholar 

  • Suck K, Roeker S, Diederichs S, Anton F, Sanz-Herrera JA, Ochoa I, Doblare M, Scheper T, van Griensven M, Kasper C (2010) A rotating bed system bioreactor enables cultivation of primary osteoblasts on well-characterised Sponceram regarding structural and flow properties. Biotechnol Prog 26:671–678

    Article  CAS  PubMed  Google Scholar 

  • Torricelli P, Fini M, Giavaresi G, Borsari V, Carpi A, Nicolini A, Giardino R (2003) Comparative interspecies investigation on osteoblast cultures: data on cellviability and synthetic activity. Biomed Pharmacother 57:57–62

    Article  CAS  PubMed  Google Scholar 

  • Ulmanen MS, Pekkarinen T, Hietala OA, Birr EA, Jalovaara P (2005) Osteoinductivity of partially purified native ostrich (Struthio camelus) bone morphogenetic protein: comparison with mammalian species. Life Sci 77:2425–2437

    Article  CAS  PubMed  Google Scholar 

  • Urist MR (2002) Bone: formation by autoinduction. Clin Orthop Relat Res 395:4–10

    Article  PubMed  Google Scholar 

  • Voegele TJ, Voegele-Kadletz M, Esposito V, Macfelda K, Oberndorfer U, Vecsei V, Schabus R (2000) The effect of different isolation techniques on human osteoblast-like cell growth. Anticancer Res 20:3575–3581

    CAS  PubMed  Google Scholar 

  • Wang H (1993) Study of antibody against protein in human allografts of decalcified bones. Zhonghua Wai Ke Za Zhi 31:177–180

    CAS  PubMed  Google Scholar 

  • Ziolkowska A, Rucinski M, Pucher A et al (2006) Expression of osteoblast marker genes in rat calvarial osteoblast-like cells, and effects of the endocrine disrupters diphenylolpropane, benzophenone-3, resveratrol and silymarin. Chem Biol Interact 164:147–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by VEGA grant No. 1/0631/09, VEGA grant No.1/0772/13 and Centre of Excellence for Neuroregenerative Research (project ITMS No. 26220120063).

Ethical standards

The experiments on animals were performed at the University of Veterinary Medicine and Pharmacy in Kosice, Slovakia, respecting the guidelines for animal experiments with the approval of the University’s ethical committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisa Harvanová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvanová, D., Hornák, S., Amrichová, J. et al. Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting. Vet Res Commun 38, 221–228 (2014). https://doi.org/10.1007/s11259-014-9607-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-014-9607-0

Keywords

Navigation