Skip to main content
Log in

Characteristics and culture of osteoblasts derived from avian long bone

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A method is presented for isolating primary osteoblasts from the periosteal surface of chick tibia. The culture system identified supports both cell proliferation and phenotype retention. Cell numbers increased 8-fold in Week 1 and 20-fold over a total of 12 days. Well-established osteoblast markers, alkaline phosphatase staining,γ-carboxyglutamic acid, osteocalcin, type I collagen, and parathyroid hormone binding were detected. Osteocalcin,γ-carboxyglutamic acid, and type I collagen were present on culture Day 4, and were increased in amount by Day 8, but were similar to the earlier level on Day 12, suggesting that the phenotype may revert to a less differentiated state by 12 days in culture. Alkaline phosphatase staining was intense at all three assay times, however. During the last 4 days of the 12-day culture period, proliferation rates were higher than in the previous 8 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwala, N.; Gay, C. V. Specific binding of parathyroid hormone to living osteoclasts. J. Bone Miner. Res. 7:531–539; 1992.

    PubMed  CAS  Google Scholar 

  2. Aronow, M. A.; Gerstenfeld, L. C.; Owen, T. A., et al. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J. Cell Physiol. 143:213–221; 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Church, L. E.; Johnson, L. C. Growth of long bones in the chicken. Rates of growth in length and diameter of the humerus, tibia, and metatarsus. Am. J. Anat. 114:521–538; 1964.

    Article  PubMed  CAS  Google Scholar 

  4. Ernst, M.; Schmid, C. M.; Foresch, E. R. Enhanced osteoblast proliferation and collagen gene expression by estradiol. Proc. Natl. Acad. Sci. USA 85:2307–2310, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Ernst, M.; Heath, J. K.; Rodan, G. A. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125:825–833; 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Gerstenfeld, L. C.; Chipman, S. D.; Glowacki, J., et al. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev. Biol. 122:49–60; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Gospodarowicz, D.; Neufeld, G.; Schweigerer, L. Fibroblast growth factor: structural and biological properties. J. Cell Physiol. Suppl. 5:15–26; 1987.

    Article  PubMed  Google Scholar 

  8. Gray, T. K.; Flynn, T. C.; Gray, K. M., et al. 17β-Estradiol acts directly on the clonal osteoblastic cell line UMR106. Proc. Natl. Acad. Sci. USA 84:6267–6271; 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Haroon, Y. Rapid assay forγ-carboxyglutamic acid in urine and bone by precolumn derivatization and reversed-phase liquid chromatography. Anal. Biochem. 140:343–348; 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Hauschka, P. V. Quantitative determination ofγ-carboxyglutamic acid in proteins. Anal. Biochem. 80:212–223; 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Keeting, P. E.; Scott, R. E.; Colvard, D. S., et al. Lack of a direct effect of estrogen on proliferation and differentiation of normal human osteoblast-like cells. J. Bone Miner. Res. 6:297–303; 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Lloyd, Q. P.; Mehta, A. M.; Leach, R. M., et al. Calcium translocation by osteoblast plasma membrane vesicles. J. Bone Miner. Res. 8:S301; 1993.

    Google Scholar 

  13. Niendorf, A.; Dietel, M.; Arps, H., et al. A novel method to demonstrate parathyroid hormone binding on unfixed living target cells in culture. J. Histochem. Cytochem. 36:307–309; 1988.

    PubMed  CAS  Google Scholar 

  14. Rodan, G. A.; Rodan, S. B. Expression of the osteoblast phenotype. In: Peck, W. A., ed. Bone and mineral, vol 2. Amsterdam: Excerpta Medica; 1984:244–286.

    Google Scholar 

  15. Rosselot, G.; Reginato, A. M.; Leach, R. M. Development of a serumfree system to study the effect of growth hormone and insulin-like growth factor-I on cultured postembryonic growth plate chondrocytes. In Vitro Cell. Dev. Biol. 28A:235–244; 1992.

    PubMed  CAS  Google Scholar 

  16. Stein, G. S.; Lian, J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Rev. 14:424–442; 1993.

    Article  CAS  Google Scholar 

  17. Turner, R. T.; Backup, P.; Sherman, P. J., et al. Mechanisms of action of estrogen on intramembranous bone formation: regulation of osteoblast differentiation and activity. Endocrinology 131:883–889; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gay, C.V., Lloyd, Q.P. & Gilman, V.R. Characteristics and culture of osteoblasts derived from avian long bone. In Vitro Cell Dev Biol - Animal 30, 379–383 (1994). https://doi.org/10.1007/BF02634358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634358

Key words

Navigation