Skip to main content
Log in

Differential gender selection on flower size in two Neotropical savanna congeneric species

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Larger flowers greatly increase among-individual pollen exchange within populations. However, water costs associated to transpirational cooling also increase with increasing flower size. Overall, the interplay between pollen and resource limitation determines the intensity of selection on flower size and this process is mostly dependent on gender and ecological context. To examine how pollinators and water use affect flower size, we determined corolla transpiration, pollen limitation, and selection through male and female fitness in two Kielmeyera species from the Brazilian cerrado flowering at different seasons. Hand-pollination experiments suggested pollen limitation through female fitness in both species, but K. coriacea showed lower limitation levels than K. regalis. For male fitness, the percentage of pollen removal was 1.5-times higher in K. coriacea. Higher air temperature and water deficit during flowering season of K. coriacea resulted in 4-fold higher corolla transpiration rates compared to K. regalis. Selection on flower size through male function was positive and significantly higher than selection through female components in both species. We also detected stabilizing selection in K. coriacea and positive selection in K. regalis on flower size through seed number. Our results suggest that selection on flower size in K. coriacea was mainly limited by water, whereas in K. regalis it was more limited by pollen. We demonstrate that differences in pollen and abiotic resource limitation determine gender-specific selection on flower size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Arista M, Ortiz PL (2007) Differential gender selection on floral size: an experimental approach using Cistus salviifolius. J Ecol 95:973–982

    Article  Google Scholar 

  • Ashman T-L, Morgan MT (2004) Explaining phenotypic selection on plant attractive characters: male function, gender balance or ecological context? Proc R Soc Lond B Biol Sci 271:553–559

    Article  Google Scholar 

  • Barrio M, Teixido AL (2015) Sex-dependent selection on flower size in a large-flowered Mediterranean species: an experimental approach with Cistus ladanifer. Plant Syst Evol 301:113–124

    Article  Google Scholar 

  • Barros MA (2002) Floração sincrônica e sistemas reprodutivos em quatro espécies de Kielmeyera Mart. (Guttiferae). Acta Bot Bras 16:113–122

    Article  Google Scholar 

  • Bateman AJ (1948) Intra-sexual variation in Drosophila. Heredity 2:349–368

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Brito VLG, Maia FR, Silveira FAO, Fracasso CM, Lemos-Filho JP, Fernandes GW, Goldenberg R et al (2017) Reproductive phenology of Melastomataceae species with contrasting reproductive systems: contemporary and historical drivers. Plant Biol 19:806–817

    Article  CAS  PubMed  Google Scholar 

  • Campbell DR, Powers JM (2015) Natural selection on floral morphology can be influenced by climate. Proc R Soc Lond B Biol Sci 282:20150178

    Article  Google Scholar 

  • Caruso CM, Remington DLD, Ostergren KE (2005) Variation in resource limitation of plant reproduction influences natural selection on floral traits of Asclepias syriaca. Oecologia 146:68–76

    Article  PubMed  Google Scholar 

  • Chapman T (2006) Evolutionary conflicts of interest between males and females. Curr Biol 16:744–754

    Article  Google Scholar 

  • Chapotin SM, Holbrook NM, Morse SR, Gutiérrez MV (2003) Water relations of tropical dry forest flowers: pathways for water entry and the role of extracellular polysaccharides. Plant Cell Environ 26:623–630

    Article  CAS  Google Scholar 

  • Conner JK (2006) Ecological genetics of floral evolution. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 260–277

    Google Scholar 

  • Cresswell JE (1998) Stabilizing selection and the structural variability of flowers within species. Ann Bot 81:463–473

    Article  Google Scholar 

  • Cruden RW, Lyon DL (1985) Patterns of biomass allocation to male and female functions in plants with different mating system. Oecologia 66:299–306

    Article  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Galen C (1996) Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution 50:120–125

    Article  PubMed  Google Scholar 

  • Galen C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. BioScience 49:631–640

    Article  Google Scholar 

  • Galen C (2005) It never rains but then it pours: the diverse effects of water on flower integrity and function. In: Reekie E, Bazzaz FA (eds) Reproductive allocation in plants. Elsevier Academic Press, San Diego, pp 75–95

    Google Scholar 

  • Galen C, Dawson TE, Stanton ML (1993) Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup. Oecologia 95:187–193

    Article  PubMed  Google Scholar 

  • Galen C, Sherry RA, Carroll AB (1999) Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of Polemonium viscosum. Oecologia 118:461–470

    Article  PubMed  Google Scholar 

  • Gallagher MK, Campbell DR (2017) Shifts in water availability mediate plant-pollinator interactions. New Phytol 215:792–802

    Article  PubMed  Google Scholar 

  • Herrera CM (1993) Selection on floral morphology and environmental determinants of fecundity in a hawk moth-pollinated violet. Ecol Monogr 63:251–275

    Article  Google Scholar 

  • Hodgins KA, Barrett SCH (2008) Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. Evolution 62:1751–1763

    Article  PubMed  Google Scholar 

  • Holland JN, Bronstein JL, DeAngelis DL (2004) Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism. Oikos 105:633–640

    Article  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR et al (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Köppen W (1900) Versuch einer klassifikation der klimate, vorzugsweise nach ihren beziehungen zur pflanzenwelt. Geogr Z 6:593–611

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  PubMed  Google Scholar 

  • Maad J, Alexandersson R (2004) Variable selection in Platanthera bifolia (Orchidaceae): phenotypic selection differed between sex functions in a drought year. J Evol Biol 17:642–650

    Article  CAS  PubMed  Google Scholar 

  • Montalvo AM, Ackerman JD (1987) Limitations to fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica 19:24–31

    Article  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology. Elsevier Academic Press, Toronto

    Google Scholar 

  • Nobel PS, De La Barrera E (2000) Carbon and water balances for young fruits of platyopuntias. Physiol Plant 109:160–166

    Article  CAS  Google Scholar 

  • Oliveira PE, Sazima M (1990) Pollination biology of two species of Kielmeyera (Guttiferae) from Brazilian cerrado vegetation. Plant Syst Evol 172:35–49

    Article  Google Scholar 

  • Oliveira PE, Silva JCS (1993) Reproductive biology of two species of Kielmeyera (Guttiferae) in the cerrados of Central Brazil. J Trop Ecol 9:67–79

    Article  Google Scholar 

  • Patiño S, Grace J (2002) The cooling of convolvulaceous flowers in a tropical environment. Plant Cell Environ 25:41–51

    Article  Google Scholar 

  • Peters J, Lanham B (2005) Tetrazolium testing handbook: contribution no. 29 to the handbook on seed testing. The Tetrazolium Subcommittee of the Association of Official Seed Analysts

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ranieri BD, Negreiros D, Lana TC, Pezzini FF, Fernandes GW (2012) Fenologia reprodutiva, sazonalidade e germinação de Kielmeyera regalis (Clusiaceae), espécie endêmica dos campos rupestres da Cadeia do Espinhaço, Brasil. Acta Bot Bras 26:632–641

    Article  Google Scholar 

  • Saddi N (1987) New species of Kielmeyera (Guttiferae) from Brazil. Kew Bull 42:221–230

    Article  Google Scholar 

  • Sahli HF, Conner JK (2011) Testing for conflicting and nonadditive selection: floral adaptation to multiple pollinators through male and female fitness. Evolution 65:1457–1473

    Article  PubMed  Google Scholar 

  • Sandring S, Ågren J (2009) Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata. Evolution 63:1292–1300

    Article  PubMed  Google Scholar 

  • Snow AA, Lewis PO (1993) Reproductive traits and male fertility in plants: empirical approaches. Annu Rev Ecol Syst 24:331–351

    Article  Google Scholar 

  • Stanton ML, Snow AA, Handel SN (1986) Floral evolution: attractiveness to pollinators increases male fitness. Science 232:1625–1627

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW (2008) Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing? Evolution 62:2435–2440

    Article  PubMed  Google Scholar 

  • Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 120–138

    Google Scholar 

  • Teixido AL, Valladares F (2013) Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size. Oecologia 173:73–81

    Article  PubMed  Google Scholar 

  • Teixido AL, Valladares F (2014) Disproportionate carbon and water maintenance costs of large corollas in hot Mediterranean ecosystems. Perspect Plant Ecol 16:83–92

    Article  Google Scholar 

  • Teixido AL, Barrio M, Valladares F (2016) Size matters: understanding the conflict faced by large flowers in Mediterranean environments. Bot Rev 82:204–228

    Article  Google Scholar 

  • Totland Ø (2001) Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82:2233–2244

    Article  Google Scholar 

  • Wright JW, Meagher TR (2004) Selection on floral characters in natural Spanish populations of Silene latifolia. J Evol Biol 17:382–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and T. Guerra for the suggestions provided to the text; J.P. Lemos-Filho for logistic support; G.W. Fernandes for providing us climatic data; F.S. Neves for statistical advice; and I. Gélvez, G. Gélvez, and C. Cavalcante for fieldwork assistance. A.L.T., A.J.A., and R.L.C.D. received a post-graduate scholarship from CAPES. L.A.O., J.V.S.M., and P.A.J. received a scientific initiation from FAPEMIG. F.A.O.S. received a productivity grant from CNPq. The data used in this study are archived at the figshare digital repository (https://doi.org/10.6084/m9.figshare.5435107.v1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Teixido.

Additional information

Communicated by Philip Ladd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixido, A.L., Dayrell, R.L.C., Arruda, A.J. et al. Differential gender selection on flower size in two Neotropical savanna congeneric species. Plant Ecol 219, 89–100 (2018). https://doi.org/10.1007/s11258-017-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0780-4

Keywords

Navigation