Skip to main content

Advertisement

Log in

Effects of ferric soils on arthropod abundance and herbivory on Tibouchina heteromalla (Melastomataceae): is fluctuating asymmetry a good indicator of environmental stress?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

High concentration of heavy metals in the soils represents an important factor of physiological stress that influences the normal functioning of plants through oxidation processes, and negatively affects insect performance and leaf consumption by herbivorous insects. One useful indicator to evaluate environmental stress in plants by heavy metals and herbivory is the fluctuating asymmetry, which describes the random differences in size or shape between the two sides of a bilateral character in organisms and it is a widely used measure of developmental instability in plants. We evaluated under natural conditions, the effects of variation of heavy metals in the soils on herbivore patterns, fluctuating asymmetry and arthropod abundance in Tibouchina heteromalla in rupestrian grasslands along the Espinhaço chain in Brazil. We selected two study areas, the first characterized by the presence of soils with low concentration of heavy metals (quartzite soils). In the second area, the soils are characterized by the presence of high concentration of heavy metals such as iron (ferric soils). We found that leaf thickness was higher in ferric soils than in quartzite soils. Conversely, total leaf area was greater in quartzite soils in comparison to ferric soils. Plants in soils with heavy metals had both lower herbivory levels and arthropod abundance than plants in soils with low concentrations of heavy metals. Fluctuating asymmetry levels were significantly greater in individuals from quartzite soils compared to individuals from ferric soils. Herbivory was positively related with individual fluctuating asymmetry in quartzite soils. Our results suggest that T. heteromalla presents tolerance to soils with heavy metals suggesting an acclimatization to these environmental conditions, and therefore, ferric soils may not represent a factor of environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abratowska A A, Wasowicz P, Bednarek PT, Telka J, Wierzbicka M (2012) Morphological and genetic distinctiveness of metallicolous and non-metallicolous populations of Armeria maritima s.l. (Plumbaginaceae) in Poland. Plant Biol 14:586–595

    Article  PubMed  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149

    Article  Google Scholar 

  • Albarrán-Lara AL, Mendoza-Cuenca L, Valencia-Avalos S, González-Rodríguez A, Oyama K (2010) Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int J Plant Sci 171:310–322

    Article  Google Scholar 

  • Alves-Silva E, Del-Claro K (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant–plant–herbivore interactions. Naturwissenschaften 100:525–532

    Article  CAS  PubMed  Google Scholar 

  • Alves-Silva E, Del-Claro K (2016) Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol Evol 149:73–80

    Article  Google Scholar 

  • Ambo-Rappe R, Lajus DL, Schreider MJ (2008) Increased heavy metal and nutrient contamination does not increase fluctuating asymmetry in the seagrass Halophila ovalis. Ecol Indic 8:100–103

    Article  CAS  Google Scholar 

  • Behmer ST, Lloyd CM, Raubenheimer D, Stewart-Clark J, Knight J, Leighton RS, Harper FA, Smith JAC (2005) Metal hyperaccumulation in plants: mechanisms of defence against insect herbivores. Funct Ecol 19:55–66

    Article  Google Scholar 

  • Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaco. Rev Bras Bot 30:569–577

    Article  Google Scholar 

  • Bertness MD, Hacker SD (1994) Physical stress and positive associations among marsh plants. Am Nat 144:363–372

    Article  Google Scholar 

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20:441–448

    Article  PubMed  Google Scholar 

  • Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567

    Article  Google Scholar 

  • Boyd RS (2007) The defence hypothesis of elemental hyperaccumulation: status, challenges and new direction. Plant Soil 293:153–176

    Article  CAS  Google Scholar 

  • Boyd RS (2009) High-nickel insects and nickel hyperaccumulator plants: a review. Insect Sc 16:19–31

    Article  CAS  Google Scholar 

  • Brudvig LA, Damschen EI, Haddad NM, Levey DJ, Tewksbury JJ (2015) The influence of habitat fragmentation on multiple plant–animal interactions and plant reproduction. Ecology 96:2669–2678

    Article  PubMed  Google Scholar 

  • Butler CD, Trumble JT (2008) Effects of pollutants on bottom-up and top-down processes in insect-plant interactions. Environ Pollut 156:1–10

    Article  CAS  PubMed  Google Scholar 

  • Campos CCF, Duarte JF, Borém RAT, de Castro DM (2009) Floral biology and breeding mechanisms of Tibouchina heteromalla cong. in rocky outcrops in the south of Minas Gerais. Braz J Ecol N, 1

  • Carvalho Filho A, Curi N, Shinzato E (2010) Relações solo-paisagem no Quadrilátero Ferrífero em Minas Gerais in the state of Minas Gerais. Pesqui Agropecu Bras 45:903–916

    Article  Google Scholar 

  • Chardonnens AN, Koevoets PLM, van Zanten A, Schat H, Verkleij JAC (1999) Properties of enhanced tonoplast zinc transport in natural selected zinc-tolerant Silene vulgaris. Plant Physiol 120:779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements WH, Cherry DS, Cairns J Jr (1988) Impact of heavy metals on insect communities in streams: a comparison of observational and experimental results. Can J Fish Aquat Sci 45:2017–2025

    Article  CAS  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plants defenses in tropical forests. Ann Rev Ecol Syst. 27:305–335

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2011) Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthropod-Plant Inte 5:59–69

    Article  Google Scholar 

  • Costa M (2000) Chromium and nickel. In: Zalups RK, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor and Francis, Great Britain, pp 113–114

    Google Scholar 

  • Cuevas-Reyes P, Quesada M, Siebe C, Oyama K (2004) Spatial patterns of herbivory by gall-forming insects: a test to the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181–189

    Article  Google Scholar 

  • Cuevas-Reyes P, De Olivera-Ker FT, Fernandes GW, Bustamante M (2011a) Abundance of gall-inducing insect species in sclerophyllous savanna: understanding the importance of soil fertility using an experimental approach. J Trop Ecol 27:1–10

    Article  Google Scholar 

  • Cuevas-Reyes P, Fernandes GW, González-Rodríguez A, Pimenta M (2011b) Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of ruprestrian host plants. Basic Appl Ecol 12:449–455

    Article  Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  CAS  PubMed  Google Scholar 

  • Fernandes GW (1988) Biogeographical gradients in galling species richness. Oecologia 76:161–167

    Article  PubMed  Google Scholar 

  • Fernandes GW (2016) Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer, The Netherlands

    Book  Google Scholar 

  • Fernandes GW, de Oliveira SCS, Campos IR, Barbosa M, Soares LA, Cuevas-Reyes P (2015) Leaf fluctuating asymmetry and herbivory of Tibouchina heteromalla in restored and natural environments. Neotrop Entomol 45:44–49

    Article  Google Scholar 

  • Freeman J, Quinn C, Marcus M, Fakra S, Pilon-Smits E (2006a) Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006b) Spatial imaging, speciation and quantification of Se in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian cerrado and their development. J Biogeogr 15:97–108

    Article  Google Scholar 

  • Goncalves M, Goncalves S, Portugal A, Silva S, Sousa J, Freitas H (2007) Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representative of two trophic levels. Plant Soil 293:177–188

    Article  CAS  Google Scholar 

  • Guimarães PJF, Martins AB (1997) Tihouchina sect. Pleroma (D.Don) Cogn. (Melastomataceae) no Estado de São Paulo. Rev Bras Bot 20:11–33

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspec Plant Ecol 8:157–178

    Article  Google Scholar 

  • Huitson SB, Macnair MR (2003) Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol 159:453–459

    Article  CAS  Google Scholar 

  • Jacobi CM, Do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–2200

    Article  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD, Davis MA (2006) Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol 183:91–104

    Article  Google Scholar 

  • Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814

    Article  CAS  PubMed  Google Scholar 

  • Johnson MTC, Ives AR, Ahern J, Juha-Pekka S (2014) Macroevolution of plant defenses against herbivores in the evening primroses. New Phytol 203:267–279

    Article  CAS  PubMed  Google Scholar 

  • Kozlov MV, Zvereva EL (2015) Confirmation bias in studies of fluctuating asymmetry. Ecol Indic 57:293–297

    Article  CAS  Google Scholar 

  • Kozlov MV, Wilsey BJ, Koricheva J, Haukioja E (1996) Fluctuating asymmetry of birch leaves increases under pollution impact. J Appl Ecol 33:1489–1495

    Article  Google Scholar 

  • La Rocca N, Andreoli C, Giacometti GM, Rascio N, Moro I (2009) Responses of the Antarctic microalga Koliella antartica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica 47:471–479

    Article  CAS  Google Scholar 

  • Levesquea KR, Fortina M, Mauffette Y (2002) Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). B Entomol Res 92:122–137

    Google Scholar 

  • Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric taxa Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. J Trop Ecol 4:463–479

    Article  Google Scholar 

  • Mal TK, Uveges JL, Turk KW (2002) Fluctuating asymmetry as an ecological indicator of heavy metal stress in Lythrum salicaria. Ecol Indic 1:189–195

    Article  CAS  Google Scholar 

  • Maldonado-López Y, Cuevas-Reyes P, Sánchez-Montoya G, Oyama K, Quesada M (2014) Growth, plant quality and leaf damage patterns in a dioecious tree species: is gender important? Arthropod-Plant Inte 8:241–251

    Google Scholar 

  • Mangabeira P, Almeida AA, Mielke M, Gomes FP, Mushrifah I, Escaig F, Laffray D, Severo MI, Oliveira AH, Galle P (2001) Ultrastructural investigations and electron probe X-ray microanalysis of chromium-treated plants. Proc. VI ICOBTE, Guelph, p. 555 (abstract).

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384

    Article  PubMed  Google Scholar 

  • Messias MCTB, Leite MGP, Neto JAAM, Kozovits AR, Tavares R (2013) Soil-vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521

    Article  Google Scholar 

  • Møller AP (1997) Developmental stability and fitness: a review. Am Nat 149:916–932

    Article  PubMed  Google Scholar 

  • Møller AP, Shykoff JA (1999) Morphological developmental stability in plants: patterns and causes. Int J Plant Sci 160:135–146

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Neves FS, Araújo LS, Espírito-Santo M, Fagundes M, Fernandes GW, Sanchez-Azofeifa GA, Quesada M (2010) Canopy herbivory and insect herbivore diversity in a dry forest–savanna transition in Brazil. Biotropica 42:112–118

    Article  Google Scholar 

  • Noret N, Meerts P, Vanhaelen M, Dos Santos A, Escarré J (2007) Do metal-rich deter herbivores? a field test of the defence hypothesis. Oecologia 152:92–100

    Article  PubMed  Google Scholar 

  • Oliveira RS, Galvao HC, Campos MCR, Eller CB, Pearse SJ, Lambers H (2014) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194

    Article  PubMed  Google Scholar 

  • Palmer AR (1994) Fluctuating asymmetry analyses: a primer. Developmental instability: its origins and evolutionary implications. Springer, Netherlands, pp 335–364

    Chapter  Google Scholar 

  • Pascual-Alvarado E, Cuevas-Reyes P, Quesada M, Oyam K (2008) Interactions between galling insects and leaf-feeding insects: the role of plant phenolic compounds and their possible interference with herbivores. J Trop Ecol 24:329–336

    Article  Google Scholar 

  • Pollard AJ, Baker AJ (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol 135:655–658

    Article  CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    Article  CAS  PubMed  Google Scholar 

  • Preeti P, Tripathi AK (2011) Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci 1:5

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SP, Londe V, Bueno AP, Barbosa JS, Corrêa TL, Soeltl T, Maia M, Pinto VD, Dueli GF, Caldas de Sousa G, Kozovits AR, Nalini JRHA (2016) Plant defense against leaf herbivory based on metal accumulation: examples from a tropical high altitude ecosystem. Plant Spec Biol 32:147–155

    Article  Google Scholar 

  • SAS (2000) Categorical data analysis using the SAS system. SAS Institute, Cary

    Google Scholar 

  • Schaefer CEGR, Corrêa GR, Candido HG, Arruda DM, Nunes JA, Araujo RW, Rodrigues PMS, Fernandes Filho EI, Pereira AFS, Brandão PC, Neri AV (2016) The physical environment of rupestrian grasslands (campos rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. Ecology and conservation of mountaintop grasslands in Brazil. Springer, The Netherlands, pp 15–53

    Chapter  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Stokes ME, Davis CS, Koch GG (2000) Categorical data analysis using the SAS system, 2nd edn. SAS, Cary

    Google Scholar 

  • Telhado C, Silveira FA, Fernandes GW, Cornelissen T (2017) Fluctuating asymmetry in leaves and flowers of sympatric species in a tropical montane environment. Plant Spec Biol 32:3–12

    Article  Google Scholar 

  • Valkama E, Koricheva J, Juha-Pekka S, Helander M, Saloniemi I, Saikkonen K, Pihlaja K (2005) Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees 19:191–197

    Article  Google Scholar 

  • Venâncio H, Alves-Silva E, Santos JC (2016) Leaf phenotypic variation and developmental instability in relation to different light regimes. Acta Bot Bras 30:296–303

    Article  Google Scholar 

  • Wierzbicka M, Rostanski A (2002) Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: a review. Acta Biol Cracov Bot 44:7e19

    Google Scholar 

  • Wilsey BJ, Haukioja E, Koricheva J, Sulkinoja M (1998) Leaf fluctuating asymmetry increases with hybridization and elevation in tree-line birches. Ecology 79:2092–2099

    Article  Google Scholar 

  • Wilson B, Pyatt FB (2007) Heavy metal dispersion, persistence, and bioaccumulation around an ancient copper mine situated in Anglesey. UK Ecotox Environ Safe 66:224–231

    Article  CAS  Google Scholar 

  • Wójcik M, Dresler S, Jawor E, Kowalczyk K, Tukiendorf A (2013) Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum. Chemosphere 90(1249):1257

    Google Scholar 

  • Wójcik M, Gonnelli C, Selvi F, Dresler S, Rostánski A, Vangronsveld J (2017) Metallophytes of serpentine and calamine soils-their unique ecophysiology and potential for phytoremediation. Adv Bot Res 83:1–42

    Article  Google Scholar 

  • Yang Y, Nan Z, Zhao Z, Wang Z, Wang S, Wang X, Jin W, Zhao C (2011) Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the polluted oasis soil Northwest China. J Environ Sci 23:1368–1374

    Article  CAS  Google Scholar 

  • Zong LG, Sun JK, Shen QY, Zhang XP (2007) Impacts of cadmium and lead pollution in soil on shoot vegetables growth and toxic-symptoms. Asia J Ecotox 2:63–68

    CAS  Google Scholar 

Download references

Acknowledgements

Pablo Cuevas-Reyes thanks Coordinación de la Investigación Científica, UMSNH for their generous support; GWF thanks the support provided by CNPq, Fapemig and Reserva Vellozia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurixhi Maldonado-López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Lori Biederman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas-Reyes, P., Novais Pereira, G.C., Gélvez-Zúñiga, I. et al. Effects of ferric soils on arthropod abundance and herbivory on Tibouchina heteromalla (Melastomataceae): is fluctuating asymmetry a good indicator of environmental stress?. Plant Ecol 219, 69–78 (2018). https://doi.org/10.1007/s11258-017-0778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0778-y

Keywords

Navigation