Skip to main content
Log in

Indirect gradient analysis by Markov-chain Monte Carlo

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Classical gradient analysis continues to be used to explore and test theories and models in community ecology. Yet the foundations of classical gradient analysis were developed at a time when computational power was limited, relative to current computational power. I argue that this history has left a lasting legacy on the field. Consequently, many gradient analyses do not to take advantage of current computer technology. Here I show how to use computationally intensive Markov-chain Monte Carlo methods to improve gradient analyses of presence–absence community data. The methods that I use were developed by quantitative social scientists in the early 1990s, and therefore tested and efficient software already exists for practical data analysis. As an example, I analyze the classic dune meadow vegetation data. A main advantage of the Bayesian approach to indirect gradient analysis is that, unlike essentially all classical indirect methods, it is able to make empirically testable probabilistic predictions of observed species occurrence patterns. The Bayesian approach also poses challenges for statistical ecology. In particular, the development of Markov-chain Monte Carlo methods for a wider class of Bayesian indirect gradient analysis models would permit more flexible approaches to generating probabilistic predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Proof: \({\mathbf {XQQ}}^\top {\mathbf {B}}^\top = {\mathbf {XIB}}^\top = {\mathbf {XB}}^\top\). The first equality is a property of orthogonal matrices and the second is a property of the identity matrix, \({\mathbf {I}}\).

References

  • Albert A, Anderson J (1984) On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1):1–10

    Article  Google Scholar 

  • Albert JH (1992) Bayesian estimation of normal ogive item response curves using Gibbs sampling. J Educ Stat 17(3):251–269

    Article  Google Scholar 

  • Austin MP (1987) Models for the analysis of species’ response to environmental gradients. Vegetatio 69:35–45

    Article  Google Scholar 

  • Bafumi J, Gelman A, Park DK, Kaplan N (2005) Practical issues in implementing and understanding Bayesian ideal point estimation. Polit Anal 13:171–187

    Article  Google Scholar 

  • Baker FB (1992) Item response theory: parameter estimation techniques. Marcel Dekker, New York

    Google Scholar 

  • Batterink M, Wijffels G (1983) Ein vergelijkend vegetatiekundig onderzoek naar de typologie en invloeden van het beheer van 1973 tot 1982 in de duinweilanden op Terschelling. Report Agricultural University,Department of Vegetation Science, Plant Ecology and Weed Science, Wageningen

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Bray JR, Curtis J (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):326–349

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Clark JS (2007) Models for ecological data. Princeton University Press, Princeton

    Google Scholar 

  • Clark JS, Gelfand AE, Woodall CW, Zhu K (2014) More than the sum of the parts: forest climate response from joint species distribution models. Ecol Appl 24(5):990–999

    Article  PubMed  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  • Dorazio RM, Royle JA (2005) Estimating the size and composition of biological communities by modeling the occurrence of species. J Am Stat Assoc 100(470):389–398

    Article  CAS  Google Scholar 

  • Duong T (2014) ks: kernel smoothing R package version 1.9.3 http://CRAN.R-project.org/package=ks

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Gauch H, Whittaker R (1972) Coenocline simulation. Ecology 53(3):446–451

    Article  Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridg

    Book  Google Scholar 

  • Gauch HG, Chase GB, Whittaker RH (1974) Ordination of vegetation samples by Gaussian species distributions. Ecology 55(6):1382–1390

    Article  Google Scholar 

  • Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–807

    Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Harris DJ (2015) Building realistic assemblages with a joint species distribution model. Method Ecol Evol, online early

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography, monographs in population biology, vol 32. Princeton University Press, Princeton

    Google Scholar 

  • Hui FKC, Taskinen S, Pledger S, Foster SD, Warton DI (2014) Model-based approaches to unconstrained ordination. Method Ecol Evol. doi:10.1111/2041-210X.12236

  • Ives AR, Helmus MR (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecol Monogr 81:511–525

    Article  Google Scholar 

  • Jackson DA, Harvey HH (1997) Qualitative and quantitative sampling of lake fish communities. Can J Fish Aquat Sci 54:2807–2813

    Article  Google Scholar 

  • Jackson DA, Somers KM (1991) Putting things in order: the ups and downs of detrended correspondence analysis. Am Nat 137(5):704–712

    Article  Google Scholar 

  • Kooperberg, C (2013) logspline: Logspline density estimation routines. R package version 2.1.5 http://CRAN.R-project.org/package=logspline

  • Legendre P, Legendre L (2012) Numerical ecology, 3 English edn. Elsevier, Amsterdam

    Google Scholar 

  • Leibold M, Holyoak M, Mouquet N, Amarasekare P, Chase J, Hoopes M, Holt R, Shurin J, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lord F (1952) A theory of test scores. Psychometric Society, New York

    Google Scholar 

  • Lord F, Novick M (1968) Statistical theories of mental test scores. Addison-Wesley, Reading

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle D (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Martin AD, Quinn KM, Park JH (2009) MCMCpack: Markov chain Monte Carlo in R. J Stat Softw 42(9):1–22

    Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Article  PubMed  Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107

    Article  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135:370–384

    Article  Google Scholar 

  • Ovaskainen O, Hottola J, Siitonen (2010) Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology 91(9):2514–2521

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Soininen J (2011) Making more out of sparse data: hierarchical modeling of species communities. Ecology 92(2):289–295

    Article  PubMed  Google Scholar 

  • Oksanen J, Guillaume BF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-10 http://CRAN.R-project.org/package=vegan

  • Plate T, Heiberger R (2011) abind: Combine multi-dimensional arrays R package version 1.4-0 http://CRAN.R-project.org/package=abind

  • Pledger S, Arnold R (2014) Multivariate methods using mixtures: correspondence analysis, scaling and pattern-detection. Comput Stat Data Anal 71:241–261

    Article  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing

  • Plummer M, Best N, Cowles K, Vines K (2009) coda: output analysis and diagnostics for MCMC. R package version 0.13-4

  • Pollock LJ, Morris WK, Vesk PA (2012) The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35:716–725

    Article  Google Scholar 

  • Pollock LJ, Tingley R, Morris WK, Golding N, O’Hara RB, Parris KM, Vesk PA, McCarthy MA (2014) Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Method Ecol Evol 5:397–406

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/

  • Schnakenberg KE, Fariss CJ (2014) Dynamic patterns of human rights practices. Polit Sci Res Methods 2:1–31

    Article  Google Scholar 

  • Schönemann PH (1966) A generalized solution of the orthogonal Procrustes problem. Psychometrika 31:1–10

    Article  Google Scholar 

  • Stan Development Team (2014) Stan: a C++ library for probability and sampling version 2.5.0 http://mc-stan.org/

  • Swan J (1970) An examination of some ordination problems by use of simulated vegetational data. Ecology 51(1):89–102

    Article  Google Scholar 

  • ter Braak CJF (1985) Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics 41(4):859–873

    Article  Google Scholar 

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Walker SC, Jackson DA (2011) Random-effects ordination: describing and predicting multivariate correlations and co-occurrences. Ecol Monogr 81(4):635–663

    Article  Google Scholar 

  • Warton DI (2011) Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations. Biometrics 67:116–123

    Article  PubMed  Google Scholar 

  • Warton DI, Foster SD, De’ath G, Stoklosa J, Dunstan PK (2014) Model-based thinking for community ecology. Plant Ecol. doi:10.1007/s11258-014-0366-3

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Whittaker R (1967) Gradient analysis of vegetation. Biol Rev 42:207–264

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2007) Reshaping data with the reshape Package. J Stat Softw 21(12):1–20

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40(11):1–29

    Google Scholar 

  • Yee TW (2004) A new technique for maximum-likelihood canonical gaussian ordination. Ecol Monogr 74(4):685–701

    Article  Google Scholar 

  • Yee TW (2010) The VGAM package for categorical data analysis. J Stat Softw 32(10):1–34

    Google Scholar 

  • Yee TM, Hadi AF (2014) Rowcolumn interaction models, with an R implementation. Comput Stat 29(6):1427–1445

    Article  Google Scholar 

Download references

Acknowledgments

I thank Donald Jackson, Marie-Josee Fortin, Ben Bolker, Laura Timms, Keith Somers and Nick Collins for comments on various earlier drafts. I gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and an Ontario Graduate Scholarship (OGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Walker.

Additional information

Communicated by Peter R. Minchin and Jari Oksanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2409 KB)

Supplementary material 2 (txt 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, S.C. Indirect gradient analysis by Markov-chain Monte Carlo. Plant Ecol 216, 697–708 (2015). https://doi.org/10.1007/s11258-015-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0467-7

Keywords

Navigation