Skip to main content

Advertisement

Log in

CircLARP1B promotes pyroptosis of high glucose-induced renal mesangial cells by regulating the miR-578/TLR4 axis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Diabetic nephropathy (DN) is a main cause of end-stage renal disease with high mortality. Circular RNAs (circRNAs) are associated with the pathogenesis of DN. This study aimed to explore the role of circLARP1B in DN.

Methods

The levels of circLARP1B, miR-578, TLR4 in DN and high glucose (HG)-treated cells using quantitative real-time PCR. Their relationship was analyzed using dual-luciferase reporter assay. The biological behaviors were assessed by MTT assay, EDU assay, flow cytometry, ELISA, and western blot.

Results

The results indicated that circLARP1B and TLR4 were highly expressed, and miR-578 was low expressed in patients with DN and HG-induced cells. Knockdown of circLARP1B promoted the proliferation and cell cycle, and inhibited pyroptosis and inflammation of HG-induced cells. CircLARP1B is a sponge of miR-578, which targets TLR4. Rescue experiments showed that inhibition of miR-578 reversed the effects of circLARP1B knockdown, while TLR4 reversed the effects of miR-578.

Conclusion

CircLARP1B/miR-578/TLR4 axis suppressed the proliferation, blocked cell cycle at the G0-G1 phase, promoted pyroptosis, and inflammatory factor release of renal mesangial cells induced by HG. The findings suggested that circLARP1B may be a target for the treatment of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124(3):139–152. https://doi.org/10.1042/CS20120198

    Article  CAS  PubMed  Google Scholar 

  2. Lu Z, Liu N, Wang F (2017) Epigenetic regulations in diabetic nephropathy. J Diabetes Res 2017:7805058. https://doi.org/10.1155/2017/7805058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valencia WM, Florez H (2017) How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ 356:i6505. https://doi.org/10.1136/bmj.i6505

    Article  PubMed  Google Scholar 

  4. Selby NM, Taal MW (2020) An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 22(Suppl 1):3–15. https://doi.org/10.1111/dom.14007

    Article  PubMed  Google Scholar 

  5. Lv J, Wu Y, Mai Y, Bu S (2020) Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy. J Diabetes Res 2020:3960857. https://doi.org/10.1155/2020/3960857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Zonneveld AJ, Kölling M, Bijkerk R, Lorenzen JM (2021) Circular RNAs in kidney disease and cancer. Nat Rev Nephrol 17(12):814–826. https://doi.org/10.1038/s41581-021-00465-9

    Article  CAS  PubMed  Google Scholar 

  7. Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, Chen X, Luo C, Huang Q, Chen T, Sun L, Fang S, Zhou W, Li Z, Long H (2021) circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes 70(2):603–615. https://doi.org/10.2337/db20-0203

    Article  CAS  PubMed  Google Scholar 

  8. Yao T, Zha D, Hu C, Wu X (2020) Circ_0000285 promotes podocyte injury through sponging miR-654–3p and activating MAPK6 in diabetic nephropathy. Gene 747:144661. https://doi.org/10.1016/j.gene.2020.144661

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Qi Y, Ji T, Tang B, Li X, Zheng P, Bai S (2021) Circ_LARP4 regulates high glucose-induced cell proliferation, apoptosis, and fibrosis in mouse mesangial cells. Gene 765:145114. https://doi.org/10.1016/j.gene.2020.145114

    Article  CAS  PubMed  Google Scholar 

  10. Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, Guerrero-Hue M, García-Caballero C, Vázquez-Carballo C, Mas S, Sanz AB, Herencia C, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J (2020) Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci 21(11):3798. https://doi.org/10.3390/ijms21113798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al Mamun A, Ara Mimi A, Wu Y, Zaeem M, Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F, Xiao J (2021) Pyroptosis in diabetic nephropathy. Clin Chim Acta 523:131–143. https://doi.org/10.1016/j.cca.2021.09.003

    Article  CAS  PubMed  Google Scholar 

  12. Wen S, Li S, Li L, Fan Q (2020) circACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol Pharm Bull 43(3):558–564. https://doi.org/10.1248/bpb.b19-00901

    Article  CAS  PubMed  Google Scholar 

  13. Maezawa Y, Takemoto M, Yokote K (2015) Cell biology of diabetic nephropathy: roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig 6(1):3–15. https://doi.org/10.1111/jdi.12255

    Article  PubMed  Google Scholar 

  14. Manda G, Checherita AI, Comanescu MV, Hinescu ME (2015) Redox signaling in diabetic nephropathy: hypertrophy versus death choices in mesangial cells and podocytes. Mediators Inflamm 2015:604208. https://doi.org/10.1155/2015/604208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton) 23(Suppl 4):32–37. https://doi.org/10.1111/nep.13451

    Article  CAS  PubMed  Google Scholar 

  16. Jin J, Sun H, Shi C, Yang H, Wu Y, Li W, Dong YH, Cai L, Meng XM (2020) Circular RNA in renal diseases. J Cell Mol Med 24(12):6523–6533. https://doi.org/10.1111/jcmm.15295

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu S, Chen Y, Ye H, Wang B, Lan X, Wang H, Ding S, He X (2022) Circ-LARP1B knockdown restrains the tumorigenicity and enhances radiosensitivity by regulating miR-578/IGF1R axis in hepatocellular carcinoma. Ann Hepatol 27(2):100678. https://doi.org/10.1016/j.aohep.2022.100678

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Hou S, Li J, Tian T, Hu R, Yu N (2022) Circular RNA circ-LARP1B contributes to cutaneous squamous cell carcinoma progression by targeting microRNA-515-5p/TPX2 microtubule nucleation factor axis. Bioengineered 13(1):1209–1223. https://doi.org/10.1080/21655979.2021.2019172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, Wang F, Xiong Y, Wang N, Gu Y, Qiu X (2020) CircZFR functions as a sponge of miR-578 to promote breast cancer progression by regulating HIF1A expression. Cancer Cell Int 20:400. https://doi.org/10.1186/s12935-020-01492-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Ma M, Yang Y, Li C, Wang Y, Sun X, Wang M, Sun Y, Jiao W (2021) Overexpression of hsa_circ_0008274 inhibited the progression of lung adenocarcinoma by regulating HMGA2 via sponging miR-578. Thorac Cancer 12(16):2258–2264. https://doi.org/10.1111/1759-7714.14059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan P, Sun C, Luan L, Han J, Qu Y, Zhou C, Xu D (2022) Hsa_circ_0134111 promotes intervertebral disc degeneration via sponging miR-578. Cell Death Discov 8(1):55. https://doi.org/10.1038/s41420-022-00856-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao Q, Zheng Y, Wang H, Hou L, Hu X (2022) circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/ toll like receptor 4 axis. Bioengineered 13(5):11388–11401. https://doi.org/10.1080/21655979.2022.2061293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou RM, Shi LJ, Shan K, Sun YN, Wang SS, Zhang SJ, Li XM, Jiang Q, Yan B, Zhao C (2020) Circular RNAZBTB44 regulates the development of choroidal neovascularization. Theranostics 10(7):3293–3307. https://doi.org/10.7150/thno.39488

  25. Regulatory Network in Diabetic Nephropathy. J Healthc Eng. 2021; 2021:8161701. doi: https://doi.org/10.1155/2021/8161701

  26. Linde A, Mosier D, Blecha F, Melgarejo T (2007) Innate immunity and inflammation–new frontiers in comparative cardiovascular pathology. Cardiovasc Res 73(1):26–36. https://doi.org/10.1016/j.cardiores.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  27. Sheu JJ, Chang LT, Chiang CH, Youssef AA, Wu CJ, Lee FY, Yip HK (2008) Prognostic value of activated toll-like receptor-4 in monocytes following acute myocardial infarction. Int Heart J 49(1):1–11. https://doi.org/10.1536/ihj.49.1

    Article  CAS  PubMed  Google Scholar 

  28. Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH (2016) Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 244:211–215. https://doi.org/10.1016/j.atherosclerosis.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Zhao Y, Yang HZ, Wang YJ, Chen Y (2021) HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep 41(2):BSR20202924. https://doi.org/10.1042/BSR20202924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu L, Han J, Yuan R, Xue L, Pang W (2018) Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 51(1):9. https://doi.org/10.1186/s40659-018-0157-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Xi’an Science and Technology Planning Project Medical Research Project: General Research under grant number 2023JH-YXYB-0302.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the studies and analysis of the data and review of the manuscript. YD drafted the work and revised it critically for important intellectual content; YF was responsible for the acquisition, analysis and interpretation of data for the work; YC and CT made substantial contributions to the conception or design of the work.

Corresponding authors

Correspondence to Yu Cai or Chang Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the Ethics Committee of The First Affiliated Hospital of Xi’an Medical University.

Consent to participate

Written informed consent was obtained from all subjects.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Feng, Y., Cai, Y. et al. CircLARP1B promotes pyroptosis of high glucose-induced renal mesangial cells by regulating the miR-578/TLR4 axis. Int Urol Nephrol 56, 283–293 (2024). https://doi.org/10.1007/s11255-023-03672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03672-4

Keywords

Navigation