Skip to main content
Log in

Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Urolithiasis is a common urologic disease. Higher consumption of vinegar was associated with a lower risk of urolithiasis. Recent studies reported that disorder of gut microbiota and injury of the tight junction of renal tubular epithelial cells were associated with the formation of renal calcium oxalate (CaOx) stones. We aimed to explore the mechanism of vinegar reduced renal CaOx stone formation by regulating gut microbiota and the tight junction of renal tubular epithelial cells.

Methods

Thirty Sprague–Dawley rats were randomly allocated to control group, model group and vinegar group. Rats in control group got 2 ml/kg of sterile water by gavage. Model group rats were additionally supplied with drinking water with 1% (v/v) ethylene glycol (EG) every day. Rats in vinegar group had 1% (v/v) EG in drinking water and were gavaged with 2 ml/kg of vinegar (5% acetate) every day.

Results

Vinegar reduced renal CaOx crystals and urinary oxalate. Vinegar increased the relative abundances of Ruminococcus gauvreauii, Ruminococcus torques, Ruminococcus-2, Moryella, Enterococcus, Alistipes, and Parabacteroides in the gut microbiota. Blood acetate increased in vinegar group. The renal tight junction occludin protein decreased in the model group and increased in the vinegar group. Studies in vitro verified that acetate could reverse the decline in occludin expression induced by CaOx crystals and inhibit CaOx crystal adhesion to cells.

Conclusion

Vinegar reduced renal CaOx stones by regulating gut microbiota and increasing blood acetate to restore renal tight junction and reduce CaOx crystal adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng G, Mai Z, Xia S, Wang Z, Zhang K, Wang L et al (2017) Prevalence of kidney stones in China: an ultrasonography based cross-sectional study. BJU Int 120:109–116. https://doi.org/10.1111/bju.13828

    Article  PubMed  Google Scholar 

  2. Liu Y, Chen Y, Liao B, Luo D, Wang K, Li H et al (2018) Epidemiology of urolithiasis in Asia. Asian J Urol 5:205–214. https://doi.org/10.1016/j.ajur.2018.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oehlschläger S, Fuessel S, Meye A, Herrmann J, Froehner M, Albrecht S et al (2009) Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls. Urology 73:480–483. https://doi.org/10.1016/j.urology.2008.11.028

    Article  PubMed  Google Scholar 

  4. Stitchantrakul W, Kochakarn W, Ruangraksa C, Domrongkitchaiporn S (2007) Urinary risk factors for recurrent calcium stone formation in Thai stone formers. J Med Assoc Thai 90:688–698

    PubMed  Google Scholar 

  5. Peerapen P, Thongboonkerd V (2011) Effects of calcium oxalate monohydrate crystals on expression and function of tight junction of renal tubular epithelial cells. Lab Invest 91:97–105. https://doi.org/10.1038/labinvest.2010.167

    Article  CAS  PubMed  Google Scholar 

  6. Verkoelen CF (2006) Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol 17:1673–1687. https://doi.org/10.1681/asn.2006010088

    Article  CAS  PubMed  Google Scholar 

  7. Tavasoli S, Alebouyeh M, Naji M, Shakiba Majd G, Shabani Nashtaei M, Broumandnia N et al (2020) Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case–control study. BJU Int 125:133–143. https://doi.org/10.1111/bju.14840

    Article  CAS  PubMed  Google Scholar 

  8. Hatch M, Freel RW (2013) A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41:379–384. https://doi.org/10.1007/s00240-013-0601-8

    Article  CAS  PubMed  Google Scholar 

  9. Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I et al (2016) Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44:399–407. https://doi.org/10.1007/s00240-016-0882-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suryavanshi MV, Bhute SS, Jadhav SD, Bhatia MS, Gune RP, Shouche YS (2016) Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci Rep 6:34712–34712. https://doi.org/10.1038/srep34712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang R, Jiang Y, Tan A, Ye J, Xian X, Xie Y et al (2018) 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 46:503–514. https://doi.org/10.1007/s00240-018-1037-y

    Article  CAS  PubMed  Google Scholar 

  12. Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A et al (2018) Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67:2097–2106. https://doi.org/10.1136/gutjnl-2017-315734

    Article  CAS  PubMed  Google Scholar 

  13. Suryavanshi MV, Bhute SS, Gune RP, Shouche YS (2018) Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci Rep 8:16598–16598. https://doi.org/10.1038/s41598-018-33773-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zampini A, Nguyen AH, Rose E, Monga M, Miller AW (2019) Defining dysbiosis in patients with urolithiasis. Sci Rep 9:5425–5425. https://doi.org/10.1038/s41598-019-41977-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M et al (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28:876–887. https://doi.org/10.1681/asn.2016020132

    Article  CAS  PubMed  Google Scholar 

  16. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  17. Xiang S, Zhou J, Li J, Wang Q, Zhang Q, Zhao Z et al (2015) Antilithic effects of extracts from different polarity fractions of Desmodium styracifolium on experimentally induced urolithiasis in rats. Urolithiasis 43:433–439. https://doi.org/10.1007/s00240-015-0795-z

    Article  PubMed  Google Scholar 

  18. Liu Y, Jin X, Hong HG, Xiang L, Jiang Q, Ma Y et al (2020) The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. Faseb J. https://doi.org/10.1096/fj.202000786R

    Article  PubMed  Google Scholar 

  19. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  20. Guo WB, Huang ZH, Yang C, Lv XY, Xia H, Tian H et al (2020) Down regulating PHGDH affects the lactate production of sertoli cells in varicocele. Reprod Biol Endocrinol 18:70. https://doi.org/10.1186/s12958-020-00625-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hung TV, Suzuki T (2018) Short-chain fatty acids suppress inflammatory reactions in Caco-2 cells and mouse colons. 66:108–117. https://doi.org/10.1021/acs.jafc.7b04233

  22. Zhu W, Liu Y, Lan Y, Li X, Luo L, Duan X et al (2019) Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMedicine 45:231–250. https://doi.org/10.1016/j.ebiom.2019.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu W, Liu Y, Duan X, Xiao C, Lan Y, Luo L et al (2020) Alteration of the gut microbiota by vinegar is associated with amelioration of hyperoxaluria-induced kidney injury. Food Funct 11:2639–2653. https://doi.org/10.1039/c9fo02172h

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Jin X, Ma Y, Jian Z, Wei Z, Xiang L, et al (2021): Short-Chain Fatty Acids Reduced Renal Calcium Oxalate Stones by Regulating the Expression of Intestinal Oxalate Transporter SLC26A6. mSystems, 6:e0104521. https://doi.org/10.1128/mSystems.01045-21

  25. Peerapen P, Chaiyarit S, Thongboonkerd V (2018) Protein network analysis and functional studies of calcium oxalate crystal-induced cytotoxicity in renal tubular epithelial cells. Proteomics 18:e1800008. https://doi.org/10.1002/pmic.201800008

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Chen Z, Dai J, Yang P, Xu W, Ai Q et al (2019) Sodium butyrate supplementation in high-soybean meal diets for turbot (Scophthalmus maximus L.): effects on inflammatory status, mucosal barriers and microbiota in the intestine. Fish Shellfish Immunol 88:65–75. https://doi.org/10.1016/j.fsi.2019.02.064

    Article  CAS  PubMed  Google Scholar 

  27. Fu J, Li G, Wu X, Zang B (2019) Sodium butyrate ameliorates intestinal injury and improves survival in a rat model of cecal ligation and puncture-induced sepsis. Inflammation 42:1276–1286. https://doi.org/10.1007/s10753-019-00987-2

    Article  CAS  PubMed  Google Scholar 

  28. Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y et al (2021) The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 165:105420. https://doi.org/10.1016/j.phrs.2021.105420

    Article  CAS  PubMed  Google Scholar 

  29. Denburg MR, Koepsell K, Lee JJ (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J Am Soc Nephrol 31:1358–1369. https://doi.org/10.1681/asn.2019101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milliner D, Hoppe B, Groothoff J (2018) A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46:313–323. https://doi.org/10.1007/s00240-017-0998-6

    Article  CAS  PubMed  Google Scholar 

  31. Hoppe B, Niaudet P, Salomon R, Harambat J, Hulton SA, Van’t Hoff W et al (2017) A randomised Phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr Nephrol 32:781–790. https://doi.org/10.1007/s00467-016-3553-8

    Article  PubMed  Google Scholar 

  32. Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ et al (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26:3609–3615. https://doi.org/10.1093/ndt/gfr107

    Article  PubMed  Google Scholar 

  33. Hoppe B, Pellikka PA, Dehmel B, Banos A, Lindner E, Herberg U (2020) Effects of Oxalobacter formigenes in subjects with primary hyperoxaluria Type 1 and end-stage renal disease: a Phase II study. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfaa135

    Article  Google Scholar 

  34. Li X, Ellis ML, Dowell AE, Kumar R, Morrow CD, Schoeb TR et al (2016) Response of germ-free mice to colonization with O. formigenes and altered Schaedler flora. Appl Environ Microbiol 82:6952–6960. https://doi.org/10.1128/AEM.02381-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300:G461–G469. https://doi.org/10.1152/ajpgi.00434.2010

    Article  CAS  PubMed  Google Scholar 

  36. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW (2006) Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69:691–698. https://doi.org/10.1038/sj.ki.5000162

    Article  CAS  PubMed  Google Scholar 

  37. Sidhu H, Allison MJ, Chow JM, Clark A, Peck AB (2001) Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol 166:1487–1491 ((PMID: 11547118))

    Article  CAS  Google Scholar 

  38. Sadaf H, Raza SI, Hassan SW (2017) Role of gut microbiota against calcium oxalate. Microb Pathog 109:287–291. https://doi.org/10.1016/j.micpath.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  39. de Almeida CV, Taddei A, Amedei A (2018) The controversial role of Enterococcus faecalis in colorectal cancer. Ther Adv Gastroenterol 11:1756284818783606–1756284818783606. https://doi.org/10.1177/1756284818783606

    Article  Google Scholar 

  40. Choi EJ, Lee HJ, Kim WJ, Han KI, Iwasa M, Kobayashi K, et al (2019) Enterococcus faecalis EF-2001 protects DNBS-induced inflammatory bowel disease in mice model. 14:e0210854. https://doi.org/10.1371/journal.pone.0210854

  41. Lengfelder I, Sava IG, Hansen JJ, Kleigrewe K, Herzog J, Neuhaus K et al (2019) Complex bacterial consortia reprogram the colitogenic activity of Enterococcus faecalis in a gnotobiotic mouse model of chronic, immune-mediated colitis. Front Immunol 10:1420. https://doi.org/10.3389/fimmu.2019.01420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clavel T, Duck W, Charrier C, Wenning M, Elson C, Haller D (2010) Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. Int. J. System. Evolut. Microbiol. 60:1527–1531. https://doi.org/10.1099/ijs.0.015016-0

  43. Kandhare AD, Patil MVK, Bodhankar SL (2015) L-Arginine attenuates the ethylene glycol induced urolithiasis in ininephrectomized hypertensive rats: role of KIM-1, NGAL, and NOs. Ren Fail 37:709–721. https://doi.org/10.3109/0886022X.2015.1011967

    Article  CAS  PubMed  Google Scholar 

  44. Pragasam V, Kalaiselvi P, Sumitra K, Srinivasan S, Varalakshmi P (2005): Counteraction of oxalate induced nitrosative stress by supplementation of l-arginine, a potent antilithic agent. Clin. Chimica Acta 354:159–166. https://doi.org/10.1016/j.cccn.2004.11.029

  45. Kizivat T, Smolić M, Marić I, Tolušić Levak M, Smolić R, Bilić Čurčić I et al (2017) Antioxidant pre-treatment reduces the toxic effects of oxalate on renal epithelial cells in a cell culture model of urolithiasis. Int J Environ Res Public Health 14:109. https://doi.org/10.3390/ijerph14010109

    Article  CAS  PubMed Central  Google Scholar 

  46. Kato J, Ruram AA, Singh SS, Devi SB, Devi TI, Singh WG (2007) Lipid peroxidation and antioxidant vitamins in urolithasis. Indian J Clin Biochem 22:128–130. https://doi.org/10.1007/BF02912895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kancha RK, Anasuya A (1992) Contribution of vitamin A deficiency to calculogenic risk factors of urine: studies in children. Biochem Med Metab Biol 47:1–9. https://doi.org/10.1016/0885-4505(92)90002-g

    Article  CAS  PubMed  Google Scholar 

  48. Munday JS, McKinnon H, Aberdein D, Collett MG, Parton K, Thompson KG (2009) Cystitis, pyelonephritis, and urolithiasis in rats accidentally fed a diet deficient in vitamin A. J Am Assoc Lab Anim Sci 48:790–794 ((PMID: 19930829))

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gershoff SN, McGandy RB (1981) The effects of vitamin A-deficient diets containing lactose in producing bladder calculi and tumors in rats. Am J Clin Nutr 34:483–489. https://doi.org/10.1093/ajcn/34.4.483

    Article  CAS  PubMed  Google Scholar 

  50. Grases F, Garcia-Gonzalez R, Genestar C, Torres JJ, March JG (1998) Vitamin A and urolithiasis. Clin Chimica Acta 269:147–157. https://doi.org/10.1016/s0009-8981(97)00198-8

  51. Pyo YH, Hwang JY, Seong KS (2018) Hypouricemic and antioxidant effects of soy vinegar extracts in hyperuricemic mice. J Med Food 21:1299–1305. https://doi.org/10.1089/jmf.2018.4181

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [81770703, 81970602], the Foundation of Science and Technology Department of Sichuan Province [2018SZ0118, 2019YFS0281], and the 1·3·5 Project for Disciplines of Excellence, West China Hospital, Sichuan University [ZYJC18015].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yu Liu, Kunjie Wang; methodology: Yu Liu, Xi Jin, Yucheng Ma, Qun Sun; formal analysis and investigation: Yu Liu, Xi Jin, Yucheng Ma; writing—original draft: Yu Liu; writing—review and editing: Xi Jin, Qun Sun, Kunjie Wang; funding acquisition: Kunjie Wang, Hong Li; resources: Kunjie Wang, Hong Li; supervision: Kunjie Wang, Hong Li.

Corresponding author

Correspondence to Kunjie Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jin, X., Ma, Y. et al. Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats. Int Urol Nephrol 54, 2485–2495 (2022). https://doi.org/10.1007/s11255-022-03259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03259-5

Keywords

Navigation