Skip to main content
Log in

Sclerostin as a new key factor in vascular calcification in chronic kidney disease stages 3 and 4

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Sclerostin is an osteocyte-derived inhibitor of the Wnt pathway and has been shown to play a key role in chronic kidney disease-mineral and bone disorder (CKD-MBD). The present study aimed to validate its potential as a predictor of vascular calcification in patients with CKD stages 3–4.

Methods

A total of 97 patients with CKD stages 3–4 were enrolled in this cross-sectional study. Routine clinical biochemistry tests and assays for sclerostin and mineral metabolism markers were performed. Additionally, vascular calcification was assessed by multislice spiral computed tomography. Logistic regression analyses were used to study the relationships between sclerostin and vascular calcification.

Results

Serum sclerostin levels (30.8 ± 6.4 vs. 41.7 ± 12.6 pmol/L, P < 0.05) were significantly elevated in patients with CKD stage 3a compared to in controls and increased with the decline in glomerular filtration rates. Furthermore, patients with vascular calcification had higher serum sclerostin levels. Patients with sclerostin levels above the median value had increased the prevalence of vascular calcification. Multivariate analysis revealed that sclerostin levels were positively associated with vascular calcification.

Conclusion

Our data indicate that sclerostin levels are elevated in patients with CKD and are associated with vascular calcification. Therefore, sclerostin may be used as a predictor of vascular calcification in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

CKD-MBD:

Chronic kidney disease-mineral bone disorder

ALP:

Alkaline phosphatase

PTH:

Parathyroid hormone

FGF23:

Fibroblast growth factor-23

KDIGO:

Kidney Disease: Improving Global Outcomes

eGFR:

Estimated glomerular filtration rates

MDRD:

Modification of Diet in Renal Disease equation

SCr:

Creatinine

CRP:

C-reactive protein

iPTH:

Intact PTH

ECLIA:

Electrochemiluminescence immunoassay

ELISA:

Enzyme-linked immunosorbent assay

CVs:

Coefficients of variation

CT:

Nonenhanced computed tomography

SEM:

Standard error of the mean

BMI:

Body mass index

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

ND-CKD:

Nondialysis chronic kidney disease

CAC:

Coronary artery calcification

VSMCs:

Vascular smooth muscle cells

References

  1. Noordzij M, Cranenburg EM, Engelsman LF, Hermans MM, Boeschoten EW, Brandenburg VM, Bos WJ, Kooman JP, Dekker FW, Ketteler M, Schurgers LJ, Krediet RT, Korevaar JC, NECOSAD Study Group (2011) Progression of aortic calcification is associated with disorders of mineral metabolism and mortality in chronic dialysis patients. Nephrol Dial Transplant 26:1662–1669

    Article  PubMed  Google Scholar 

  2. Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J, Young EW, Akizawa T, Akiba T, Pisoni RL, Robinson BM, Port FK (2008) Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 52:519–530

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham J, Locatelli F, Rodriguez M (2011) Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol 6:913–921

    Article  CAS  PubMed  Google Scholar 

  4. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL (2005) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16:520–528

    Article  CAS  PubMed  Google Scholar 

  5. Sigrist M, Bungay P, Taal MW, McIntyre CW (2006) Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol Dial Transplant 21:707–714

    Article  PubMed  Google Scholar 

  6. Sumida Y, Nakayama M, Nagata M, Nakashita S, Suehiro T, Kaizu Y, Ikeda H, Izumaru K (2010) Carotid artery calcification and atherosclerosis at the initiation of hemodialysis in patients with end-stage renal disease. Clin Nephrol 73:360–369

    Article  CAS  PubMed  Google Scholar 

  7. London GM, Guerin AP, Marchais SJ, Métivier F, Pannier B, Adda H (2003) Arterial media calcification in endstage renal diseases: impact on all cause and cardiovascular mortality. Nephrol Dial Transplant 18:1731–1740

    Article  PubMed  Google Scholar 

  8. Adeney KL, Siscovick DS, Ix JH, Seliger SL, Shlipak MG, Jenny NS, Kestenbaum BR (2009) Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 20:381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moe SM, Reslerova M, Ketteler M, O’Neill K, Duan D, Koczman J, Westenfeld R, Jahnen-Dechent W, Chen NX (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama M, Kaizu Y, Nagata M, Ura Y, Ikeda H, Shimamoto S, Kuma K (2013) Fibroblast growth factor 23 is associated with carotid artery calcification in chronic kidney disease patients not undergoing dialysis: a cross-sectional study. BMC Nephrol 14:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sabbagh Y, Graciolli FG, O’Brien S, Tang W, dos Reis LM, Ryan S, Phillips L, Boulanger J, Song W, Bracken C, Liu S, Ledbetter S, Dechow P, Canziani ME, Carvalho AB, Jorgetti V, Moyses RM, Schiavi SC (2012) Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 27:1757–1772

    Article  CAS  PubMed  Google Scholar 

  12. Cejka D, Marculescu R, Kozakowski N (2014) Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab 99:248–255

    Article  CAS  PubMed  Google Scholar 

  13. Moester MJ, Papapoulos SE, Löwik CW, van Bezooijen RL (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brandenburg VM, Kramann R, Koos R, Krüger T, Schurgers L, Mühlenbruch G, Hübner S, Gladziwa U, Drechsler C, Ketteler M (2013) Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol 14:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  16. Morena M, Jaussent I, Dupuy AM, Bargnoux AS, Kuster N, Chenine L, Leray-Moragues H, Klouche K, Vernhet H, Canaud B, Cristol JP (2015) Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant 30:1345–1356

    Article  PubMed  Google Scholar 

  17. Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D (2013) The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 8:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moe SM, Drüeke T (2008) Improving global outcomes in mineral and bone disorders. Clin J Am Soc Nephrol 3:S127–S130

    Article  PubMed  PubMed Central  Google Scholar 

  19. Craver L, Marco MP, Martínez I, Rue M, Borràs M, Martín ML, Sarró F, Valdivielso JM, Fernández E (2007) Mineral metabolism parameters throughout chronic kidney disease stages 1–5—achievement of K/DOQI target ranges. Nephrol Dial Transplant 22:1171–1176

    Article  CAS  PubMed  Google Scholar 

  20. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109:697–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cannata-Andia JB, Roman-Garcia P, Hruska K (2011) The connections between vascular calcification and bone health. Nephrol Dial Transplant 26:3429–3436

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thambiah S, Roplekar R, Manghat P, Fogelman I, Fraser WD, Goldsmith D, Hampson G (2012) Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif Tissue Int 90:473–480

    Article  CAS  PubMed  Google Scholar 

  23. Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ 3rd, Khosla S (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Drüeke TB, Lafage-Proust MH (2011) Sclerostin: just one more player in renal bone disease? Clin J Am Soc Nephrol 6:700–703

    Article  CAS  PubMed  Google Scholar 

  26. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844

    CAS  PubMed  Google Scholar 

  27. Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH (2011) Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 6:877–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Viaene L, Behets GJ, Claes K, Meijers B, Blocki F, Brandenburg V, Evenepoel P, D’Haese PC (2013) Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant 28:3024–3030

    Article  CAS  PubMed  Google Scholar 

  29. Morales-Santana S, García-Fontana B, García-Martín A, Rozas-Moreno P, García-Salcedo JA, Reyes-García R, Muñoz-Torres M (2013) Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care 36:1667–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Claes KJ, Viaene L, Heye S, Meijers B, d’Haese P, Evenepoel P (2013) Sclerostin: another vascular calcification inhibitor? J Clin Endocrinol Metab 98:3221–3228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Promotive Research Fund for Science and Technology Development Plan Project of Yantai, Shandong Province (2016), and was supported by National Natural Science Foundation of China (81302234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standard

This study was conducted in accordance with the Declaration of Helsinki. All of the participants provided written informed consent for the protocol, which was approved by the Ethics Committee of Yuhuangding Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, W., Guan, L., Zhang, Y. et al. Sclerostin as a new key factor in vascular calcification in chronic kidney disease stages 3 and 4. Int Urol Nephrol 48, 2043–2050 (2016). https://doi.org/10.1007/s11255-016-1379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1379-8

Keywords

Navigation