Skip to main content

Advertisement

Log in

Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease

  • Nephrology – Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  2. Shiraki-Iida T, Aizawa H, Matsumura Y et al (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424:6–10

    Article  CAS  PubMed  Google Scholar 

  3. Hu MC, Shi M, Zhang J et al (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1988) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 26:626–630

    Google Scholar 

  5. Hu MC, Kuro-o M, Moe OW (2013) Renal and extrarenal actions of Klotho. Semin Nephrol 33:118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuro-o M (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15:437–441

    Article  CAS  PubMed  Google Scholar 

  7. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790:1049–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moe OW (2009) PiT-2 coming out of the pits. Am J Physiol Renal Physiol 296:F689–F690

    Article  CAS  PubMed  Google Scholar 

  10. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310(5747):490–493

    Article  CAS  PubMed  Google Scholar 

  11. Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro O, Huang CL (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 105(28):9805–9810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL (2009) Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol 76:38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tosato M, Zamboni V, Ferrini A, Cesari M (2007) The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2:401–412

    PubMed  PubMed Central  Google Scholar 

  14. Sugiura H, Tsuchiya K, Nitta K (2011) Circulating levels of soluble alpha-Klotho in patients with chronic kidney disease. Clin Exp Nephrol 15:795–796

    Article  PubMed  Google Scholar 

  15. Stenvinkel P, Larsson TE (2013) Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis 62:339–351

    Article  PubMed  Google Scholar 

  16. Yamamoto M, Clark JD, Pastor JV et al (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 11(280):38029–38034

    Article  Google Scholar 

  17. Maekawa Y, Ishikawa K, Yasuda O et al (2009) Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine 35:341–346

    Article  CAS  PubMed  Google Scholar 

  18. Maekawa Y, Ohishi M, Ikushima M et al (2011) Klotho protein diminishes endothelial apoptosis and senescence via a mitogen-activated kinase pathway. Geriatr Gerontol Int 11:510–516

    Article  PubMed  Google Scholar 

  19. Sugiura H, Yoshida T, Shiohira S et al (2012) Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol Renal Physiol 15(302):F1252–F1264

    Article  Google Scholar 

  20. Hu MC, Shi M, Zhang J et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22(1):124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olauson H, Lindberg K, Amin R et al (2012) Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J Am Soc Nephrol 23:1641–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sitara D, Kim S, Razzaque MS et al (2008) Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet 4(8):e1000154

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ohnishi M, Nakatani T, Lanske B, Razzaque MS (2009) Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int 75:1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 24:3562–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31:607–617

    Article  CAS  PubMed  Google Scholar 

  26. Dhingra R, Sullivan LM, Fox CS et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 14(167):879–885

    Article  Google Scholar 

  27. Foley RN, Collins AJ, Herzog CA, Ishani A, Kalra PA (2009) Serum phosphate and left ventricular hypertrophy in young adults: the coronary artery risk development in young adults study. Kidney Blood Press Res 32:37–44

    Article  CAS  PubMed  Google Scholar 

  28. Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA (2008) The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol 19:1092–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 25(112):2627–2633

    Article  Google Scholar 

  30. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299(5611):1346–1351

    Article  CAS  PubMed  Google Scholar 

  31. Utsugi T, Ohno T, Ohyama Y et al (2000) Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49:1118–1123

    Article  CAS  PubMed  Google Scholar 

  32. Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309(5742):1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolf I, Levanon-Cohen S, Bose S et al (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27(56):7094–7105

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806

    Article  CAS  PubMed  Google Scholar 

  35. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31:1281–1357

    Article  CAS  PubMed  Google Scholar 

  36. Osanai T, Kanazawa T, Yokono Y, Uemura T, Okuguchi T, Onodera K (1993) Effect of aging on sensitivity of blood pressure to salt. Nihon Ronen Igakkai Zasshi 30:30–34

    Article  CAS  PubMed  Google Scholar 

  37. Weinberger MH, Fineberg NS (1991) Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension 18:67–71

    Article  CAS  PubMed  Google Scholar 

  38. Xiao NM, Zhang YM, Zheng Q, Gu J (2004) Klotho is a serum factor related to human aging. Chin Med J (Engl) 117:742–747

    CAS  Google Scholar 

  39. Zhou X, Chen K, Lei H, Sun Z (2015) Klotho gene deficiency causes salt-sensitive hypertension via monocyte chemotactic protein-1/CC chemokine receptor 2-mediated inflammation. J Am Soc Nephrol 26:121–132

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Mo H, Miao J et al (2015) Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system. Am J Pathol 185:3211–3223

    Article  CAS  PubMed  Google Scholar 

  41. Karalliedde J, Maltese G, Hill B, Viberti G, Gnudi L (2013) Effect of renin-angiotensin system blockade on soluble Klotho in patients with type 2 diabetes, systolic hypertension, and albuminuria. Clin J Am Soc Nephrol 8:1899–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin Y, Chen J, Sun Z (2016) Antiaging gene klotho deficiency promoted high-fat diet-induced arterial stiffening via inactivation of AMP-activated protein kinase. Hypertension 67:564–573

    CAS  PubMed  Google Scholar 

  43. Andrukhova O, Slavic S, Smorodchenko A et al (2014) FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 6:744–759

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Arking DE, Krebsova A, Macek M et al (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 22(99):856–861

    Article  Google Scholar 

  45. Imamura A, Okumura K, Ogawa Y et al (2006) Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clin Chim Acta 371:66–70

    Article  CAS  PubMed  Google Scholar 

  46. Kim Y, Kim JH, Nam YJ et al (2006) Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci Lett 30(407):189–194

    Article  Google Scholar 

  47. Rhee EJ, Oh KW, Yun EJ et al (2006) Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the KLOTHO gene with glucose metabolism and cardiovascular risk factors in Korean women. J Endocrinol Invest 29:613–618

    Article  CAS  PubMed  Google Scholar 

  48. Rhee EJ, Oh KW, Lee WY et al (2006) The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism 55:1344–1351

    Article  CAS  PubMed  Google Scholar 

  49. Shimoyama Y, Nishio K, Hamajima N, Niwa T (2009) KLOTHO gene polymorphisms G-395A and C1818T are associated with lipid and glucose metabolism, bone mineral density and systolic blood pressure in Japanese healthy subjects. Clin Chim Acta 406:134–138

    Article  CAS  PubMed  Google Scholar 

  50. Wang HL, Xu Q, Wang Z et al (2010) A potential regulatory single nucleotide polymorphism in the promoter of the Klotho gene may be associated with essential hypertension in the Chinese Han population. Clin Chim Acta 411:386–390

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Sun Z (2009) Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 54:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dammanahalli KJ, Sun Z (2008) Endothelins and NADPH oxidases in the cardiovascular system. Clin Exp Pharmacol Physiol 35(1):2–6

    Article  CAS  PubMed  Google Scholar 

  53. Sagar S, Kallo IJ, Kaul N, Ganguly NK, Sharma BK (1992) Oxygen free radicals in essential hypertension. Mol Cell Biochem 111:103–108

    Article  CAS  PubMed  Google Scholar 

  54. Saito Y, Nakamura T, Ohyama Y et al (2000) In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun 24(276):767–772

    Article  Google Scholar 

  55. Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR (2003) Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 30:849–854

    Article  CAS  PubMed  Google Scholar 

  56. Mazighi M, Pelle A, Gonzalez W et al (2004) IL-10 inhibits vascular smooth muscle cell activation in vitro and in vivo. Am J Physiol Heart Circ Physiol 287:H866–H871

    Article  CAS  PubMed  Google Scholar 

  57. Sugiura H, Yoshida T, Mitobe M et al (2010) Klotho reduces apoptosis in experimental ischaemic acute kidney injury via HSP-70. Nephrol Dial Transplant 25:60–68

    Article  CAS  PubMed  Google Scholar 

  58. Dai S, Zou Y, Togao O et al (2011) Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286:8655–8665

    Article  Google Scholar 

  59. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang K, Wang C, Nie L et al (2015) Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol 26:2434–2446

    Article  CAS  PubMed  Google Scholar 

  61. Guan X, Nie L, He T et al (2014) Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol 234:560–572

    Article  CAS  PubMed  Google Scholar 

  62. Zhao Y, Banerjee S, Dey N et al (2011) Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine) 536 phosphorylation. Diabetes 60:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu F, Wu S, Ren H, Gu J (2011) Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol 13:254–262

    Article  CAS  PubMed  Google Scholar 

  64. Xie J, Yoon J, An SW, Kuro-o M, Huang CL (2015) Soluble klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J Am Soc Nephrol 26:1150–1160

    Article  CAS  PubMed  Google Scholar 

  65. Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81:640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreno JA, Izquierdo MC, Sanchez-Nino MD et al (2011) The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J Am Soc Nephrol 22:1315–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu MC, Shi M, Zhang J et al (2016) Renal production, uptake, and handling of circulating alphaklotho. J Am Soc Nephrol 27:79–90

    Article  PubMed  Google Scholar 

  68. Kadoya H, Satoh M, Haruna Y, Sasaki T, Kashihara N (2015) Klotho attenuates renal hypertrophy and glomerular injury in Ins2Akita diabetic mice. Clin Exp Nephrol. doi:10.1007/s10157-015-1202-3

  69. Wang Y, Sun Z (2014) Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats. J Hypertens 32:1629–1636

    Article  CAS  PubMed  Google Scholar 

  70. Kim AJ, Ro H, Kim H et al (2016) Klotho and S100A8/A9 as discriminative markers between pre-renal and intrinsic acute kidney injury. PLoS ONE 11(1):e0147255

    Article  PubMed  PubMed Central  Google Scholar 

  71. Semba RD, Cappola AR, Sun K et al (2011) Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc 59:1596–1601

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bernheim J, Benchetrit S (2011) The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases. Nephrol Dial Transplant 26:2433–2438

    Article  CAS  PubMed  Google Scholar 

  73. Gao LL, Ding X, Xie DM, Yang M, Dong BR (2015) G-395A polymorphism in the promoter region of the KLOTHO gene and hypertension among elderly (90 years and older) Chinese individuals. Genet Mol Res 14:15444–15452

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigas G. Kalaitzidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaitzidis, R.G., Duni, A. & Siamopoulos, K.C. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 48, 1657–1666 (2016). https://doi.org/10.1007/s11255-016-1325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1325-9

Keywords

Navigation