Skip to main content
Log in

Almost Everywhere Convergence of T Means with Respect to the Vilenkin System of Integrable Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove and discuss some new weak-type (1,1) inequalities for the maximal operators of T means with respect to the Vilenkin system generated by monotonic coefficients. We also apply the accumulated results to prove that these T means are almost everywhere convergent. As applications, we present both some well-known and new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups [in Russian], Baku, Elm (1981).

  2. I. Blahota, “On a norm inequality with respect to Vilenkin-like systems,” Acta Math. Hungar., 89, No. 1-2, 15–27 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Blahota and G. Tephnadze, “Strong convergence theorem for Vilenkin–Fejér means,” Publ. Math. Debrecen, 85, No. 1-2, 181–196 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Billard, “Sur la convergence presque partout des séries de Fourier–Walsh des fonctions de l’espace L2[0, 1],” Studia Math., 28, 363–388 (1967).

    Article  MATH  Google Scholar 

  5. I. Blahota, K. Nagy, L. E. Persson, and G. Tephnadze, “A sharp boundedness result concerning some maximal operators of partial sums with respect to Vilenkin systems,” Georgian Math. J., 26, No. 3, 351–360 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Demeter, “Singular integrals along N directions in R2,Proc. Amer. Math. Soc., 138, 4433–4442 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Gát, “Cesàro means of integrable functions with respect to unbounded Vilenkin systems,” J. Approx. Theory, 124, No. 1, 25–43 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gát and U. Goginava, “Uniform and L-convergence of logarithmic means of Walsh–Fourier series,” Acta Math. Sin. (Engl. Ser.), 22, No. 2, 497–506 (2006).

  9. G. Gát and U. Goginava, “Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh–Fourier series,” Publ. Math. Debrecen, 71, No. 1-2, 173–184 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Goginava and K. Nagy, “On the maximal operator of Walsh–Kaczmarz–Fejer means,” Czechoslovak Math. J., 61, No. 3, 673–686 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. A. Gosselin, “Almost everywhere convergence of Vilenkin–Fourier series,” Trans. Amer. Math. Soc., 185, 345–370 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. I. Golubov, A.V. Efimov, and V. A. Skvortsov, Walsh Series and Transforms [in Russian], Nauka, Moscow (1987); English translation: Mathematics and Its Applications, 64, Kluwer AP, Dordrecht (1991).

    Google Scholar 

  13. D. Lukkassen, L. E. Persson, G. Tephnadze, and G. Tutberidze, “Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin–Fourier series,” J. Inequal. Appl. (2020); https://doi.org/10.1186/s13660-020-02342-8.

    Article  MATH  Google Scholar 

  14. F. Móricz and A. Siddiqi, “Approximation by Nörlund means of Walsh–Fourier series (English summary),” J. Approx. Theory, 70, No. 3, 375–389 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Nagy, “Approximation by Nörlund means of Walsh–Kaczmarz–Fourier series,” Georgian Math. J., 18, No. 1, 147–162 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Nagy, “Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series,” Anal. Math., 36, No. 4, 299–319 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Nagy, “Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions,” Math. Inequal. Appl., 15, No. 2, 301–322 (2012).

    MathSciNet  MATH  Google Scholar 

  18. K. Nagy and G. Tephnadze, “Walsh–Marcinkiewicz means and Hardy spaces,” Centr. Europ. J. Math., 12, No. 8, 1214–1228 (2014).

    MathSciNet  MATH  Google Scholar 

  19. K. Nagy and G. Tephnadze, “Approximation byWalsh–Marcinkiewicz means on the Hardy space,” Kyoto J. Math., 54, No. 3, 641–652 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Nagy and G. Tephnadze, “Strong convergence theorem for Walsh–Marcinkiewicz means,” Math. Inequal. Appl., 19, No. 1, 185–195 (2016).

    MathSciNet  MATH  Google Scholar 

  21. K. Nagy and G. Tephnadze, “The Walsh–Kaczmarz–Marcinkiewicz means and Hardy spaces,” Acta Math. Hungar., 149, No. 2, 346–374 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. P´al and P. Simon, “On a generalization of the concept of derivative,” Acta Math. Acad. Sci. Hungar., 29, No. 1-2, 155–164 (1977).

  23. L.-E. Persson, F. Schipp, G. Tephnadze, and F. Weisz, “An analogy of the Carleson–Hunt theorem with respect to Vilenkin systems,” J. Fourier Anal. Appl., 28, Article 48 (2022).

  24. L. E. Persson, G. Tephnadze, and P. Wall, “Maximal operators of Vilenkin–N¨orlund means,” J. Fourier Anal. Appl., 21, No. 1, 76–94 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. E. Persson, G. Tephnadze, and P. Wall, “On an approximation of 2-dimensional Walsh–Fourier series in the martingale Hardy spaces,” Ann. Funct. Anal., 9, No. 1, 137–150 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. E. Persson, G. Tephnadze, and P. Wall, “Some new (Hp,Lp) type inequalities of maximal operators of Vilenkin–Nörlund means with non-decreasing coefficients,” J. Math. Inequal., 9, No. 4, 1055–1069 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  27. L. E. Persson, G. Tephnadze, and P. Wall, “On an approximation of 2-dimensional Walsh–Fourier series in the martingale Hardy spaces,” Ann. Funct. Anal., 9, No. 1, 137–150 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  28. L. E. Persson, G. Tephnadze, and G. Tutberidze, “On the boundedness of subsequences of Vilenkin–Fejér means on the martingale Hardy spaces,” Oper. Matrices, 14, No. 1, 283–294 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. L. E. Persson, G. Tephnadze, G. Tutberidze, and P.Wall, “Some new results on the strong convergence of Fejér means with respect to Vilenkin systems,” Ukr. Math. Zh., 73, No. 4, 544–555 (2021); English translation: Ukr. Math. J., 73, No. 4, 635–648 (2021).

  30. F. Schipp, “Certain rearrangements of series in the Walsh system,” Mat. Zametki, 18, No. 2, 193–201 (1975).

    MathSciNet  Google Scholar 

  31. F. Schipp, “Pointwise convergence of expansions with respect to certain product systems,” Anal. Math., 2, 65–76 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Schipp, “Universal contractive projections and a.e. convergence,” Probability Theory and Applications, Essays to the Memory of József Mogyoródi, Kluwer AP, Dordrecht, etc. (1992), pp. 47–75.

  33. F. Schipp and F. Weisz, “Tree martingales and almost everywhere convergence of Vilenkin–Fourier series,” Math. Pannon., 8, 17–36 (1997).

    MathSciNet  MATH  Google Scholar 

  34. F. Schipp, W. R. Wade, P. Simon, and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol (1990).

  35. P. Sjölin, “An inequality of Paley and convergence a.e. of Walsh–Fourier series,” Ark. Mat., 8, 551–570 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Simon, “Strong convergence theorem for Vilenkin–Fourier series,” J. Math. Anal. Appl., 245, 52–68 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Simon, “Strong convergence of certain means with respect to the Walsh–Fourier series,” Acta Math. Hungar., 49, No. 3-4, 425–431 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Tephnadze, “On the maximal operators of Vilenkin–Fejér means,” Turkish J. Math., 37, No. 2, 308–318 (2013).

    MathSciNet  MATH  Google Scholar 

  39. G. Tephnadze, “On the maximal operators of Vilenkin–Fejér means on Hardy spaces,” Math. Inequal. Appl., 16, No. 2, 301–312 (2013).

    MathSciNet  MATH  Google Scholar 

  40. G. Tephnadze, “On the maximal operators of Walsh–Kaczmarz–Fejér means,” Period. Math. Hungar., 67, No. 1, 33–45 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Tephnadze, “Approximation by Walsh–Kaczmarz–Fejér means on the Hardy space,” Acta Math. Sci., 34, No. 5, 1593–1602 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Tephnadze, “On the maximal operators of Riesz logarithmic means of Vilenkin–Fourier series,” Studia Sci. Math. Hungar., 51, No. 1, 105–120 (2014).

    MathSciNet  MATH  Google Scholar 

  43. G. Tephnadze, “On the partial sums of Walsh–Fourier series,” Colloq. Math., 141, No. 2, 227–242 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Tephnadze, “On the partial sums of Vilenkin–Fourier series,” J. Contemp. Math. Anal., 49, No. 1, 23–32 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Tutberidze, “Sharp (Hp,Lp) type inequalities of maximal operators of means with respect to Vilenkin systems with monotone coefficients,” Mediterran. J. Math., No. 2, Paper No. 81 (2022).

  46. G. Tutberidze, “Maximal operators of T means with respect to the Vilenkin system,” Nonlin. Stud., 27, No. 4, 1157–1167 (2020).

    MathSciNet  MATH  Google Scholar 

  47. N. Vilenkin, “On a class of complete orthonormal systems,” Amer. Math. Soc. Transl., 28, No. 2, 1–35 (1963).

    MathSciNet  MATH  Google Scholar 

  48. F. Weisz, “Cesáro summability of one- and two-dimensional Fourier series,” Anal. Math. Stud., 5, 353–367 (1996).

    MATH  Google Scholar 

  49. F. Weisz, “Q-summability of Fourier series,” Acta Math. Hungar., 103, No. 1-2, 139–175 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Weisz, “Martingale Hardy spaces and their applications in Fourier-analysis,” Lecture Notes in Math., vol. 1568, Springer, Berlin, etc. (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nadirashvili.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 7, pp. 933–945, July, 2023. Ukrainian DOI: https://doi.org/10.37863/umzh.v75i7.7163.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadirashvili, N. Almost Everywhere Convergence of T Means with Respect to the Vilenkin System of Integrable Functions. Ukr Math J 75, 1067–1080 (2023). https://doi.org/10.1007/s11253-023-02247-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02247-x

Navigation