Skip to main content
Log in

Uniform Approximations by Fourier Sums on the Sets of Convolutions of Periodic Functions of High Smoothness

  • Published:
Ukrainian Mathematical Journal Aims and scope

On the sets of 2π-periodic functions f specified by the (ψ, β)-integrals of functions φ from L1, we establish Lebesgue-type inequalities in which the uniform norms of deviations of the Fourier sums are expressed via the best approximations of the functions φ by trigonometric polynomials in the mean. It is shown that obtained estimates are asymptotically unimprovable in the case where the sequences ψ (k) approach zero faster than any power function. In some important cases, we establish asymptotic equalities for the exact upper bounds of the uniform approximations by Fourier sums in the classes of (ψ, β)-integrals of the functions φ that belong to the unit ball in the space L1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  2. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

  3. L. Fejer, “Lebesguesche Konstanten und divergente Fourierreihen,” J. Reine Angew. Math., 138, 22–53 (1910).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. V. Galkin, “Estimates for the Lebesgue constants,” Tr. Mat. Inst. Akad. Nauk SSSR, 109, 3–5 (1971).

    MathSciNet  Google Scholar 

  5. V. V. Zhuk and G. I. Natanson, Trigonometric Fourier Series and Elements of Approximation Theory [in Russian], Leningrad University, Leningrad (1983).

  6. A. Kolmogoroff, “Zur Grössenordnung des Restgliedes Fourierschen Reihen differenzierbaren Funktionen,” Ann. Math. (2), 36, No. 2, 521–526 (1935).

  7. N. P. Korneichuk, Exact Constants in Approximation Theory [in Russian], Nauka, Moscow (1987).

  8. A. P. Musienko and A. S. Serdyuk, “Lebesgue-type inequalities for the de la Vallée-Poussin sums on sets of analytic functions,” Ukr. Mat. Zh., 65, No. 4, 522-537 (2013); English translation: Ukr. Math. J., 65, No. 4, 575–592 (2013).

  9. A. P. Musienko and A. S. Serdyuk, “Lebesgue-type inequalities for the de la Vallée-Poussin sums on sets of entire functions,” Ukr. Mat. Zh., 65, No. 5, 642–653 (2013); English translation: Ukr. Math. J., 65, No. 5, 709–722 (2013).

  10. G. I. Natanson, ”Estimation of Lebesgue constants for the de la Vallée-Poussin sums,” in: Geometric Problems of the Theory of Functions and Sets [in Russian], Kalinin (1986), pp. 102–108.

  11. S. M. Nikol’skii, “Approximation of functions in the mean by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, No. 3, 207–256 (1946).

  12. A. S. Serdyuk, “Approximation of classes of analytic functions by Fourier sums in uniform metric,” Ukr. Mat. Zh., 57, No. 8, 1079–1096 (2005); English translation: Ukr. Math. J., 57, No. 8, 1275–1296 (2005).

  13. A. S. Serdyuk, “Approximation of classes of analytic functions by Fourier sums in the metric of the space Lp,Ukr. Mat. Zh., 57, No. 10, 1395–1408 (2005); English translation: Ukr. Math. J., 57, No. 10, 1635–1651 (2005).

  14. A. S. Serdyuk and A. P. Musienko, “Lebesgue-type inequalities for the de la Vallée-Poussin sums in the approximation of Poisson integrals,” in: Approximation Theory of Functions and Related Problems: Collection of Works of the Institute of Mathematics, Nats. Akad. Nauk Ukr. [in Ukrainian], 7, No. 1, 298–316 (2010).

  15. A. S. Serdyuk and I. V. Sokolenko, “Approximation by Fourier sums in classes of differentiable functions with high exponents of smoothness,” Meth. Funct. Anal. Topol., 25, No. 4, 381–387 (2019).

    MathSciNet  MATH  Google Scholar 

  16. A. S. Serdyuk and I. V. Sokolenko, “Approximation by Fourier sums in the classes of Weyl–Nagy differentiable functions with high exponent of smoothness,” Ukr. Mat. Zh., 74, No. 5, 685–700 (2022); English translation: Ukr. Math. J., 74, No. 5, 783–800 (2022).

  17. A. S. Serdyuk and T. A. Stepanyuk, “Estimates of the best approximations for the classes of infinitely differentiable functions in uniform and integral metrics,” Ukr. Mat. Zh., 66, No. 9, 1244–1256 (2014); English translation: Ukr. Math. J., 66, No. 9, 1393–1407 (2015).

  18. A. S. Serdyuk and T. A. Stepanyuk, “Uniform approximations by Fourier sums on the classes of convolutions with Poisson integrals,” Dop. Nats. Akad. Nauk Ukr., No. 11, 10–16 (2016).

  19. A. S. Serdyuk and T. A. Stepanyuk, “Approximation of the classes of generalized Poisson integrals by Fourier sums in metrics of the spaces Ls,69, No. 5, 695–704 (2017); English translation: Ukr. Math. J., 69, No. 5, 811–822 (2017).

  20. A. S. Serdyuk and T. A. Stepanyuk, “Uniform approximations by Fourier sums on classes of generalized Poisson integrals,” Anal. Math., 45, No. 1, 201–236 (2019).

    Article  MathSciNet  Google Scholar 

  21. A. S. Serdyuk and T. A. Stepanyuk, “Asymptotically best possible Lebesgue-type inequalities for the Fourier sums on sets of generalized Poisson integrals,” Filomat, 34, No. 14, 4697–4707 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. S. Serdyuk and T. A. Stepanyuk, “About Lebesgue inequalities on the classes of generalized Poisson integrals,” Jaen J. Approx., 12, 25–40 (2021).

    MathSciNet  MATH  Google Scholar 

  23. A. I. Stepanets, “Classification of periodic functions and the rate of convergence of their Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat., 50, No. 1, 101–136 (1986).

  24. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).

    MATH  Google Scholar 

  25. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv (2002).

  26. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 2, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv (2002).

  27. A. I. Stepanets, “Lebesgue’s inequality on classes of (ψ, β)-differentiable functions,” Ukr. Mat. Zh., 41, No. 4, 499–510 (1989); English translation: Ukr. Math. J., 41, No. 4, 435–443 (1989).

  28. A. I. Stepanets and A. S. Serdyuk, “Lebesgue inequalities for Poisson integrals,” Ukr. Mat. Zh., 52, No. 6, 798–808 (2000); English translation: Ukr. Math. J., 52, No. 6, 914–925 (2000).

  29. A. I. Stepanets and A. S. Serdyuk, “Approximation by Fourier sums and best approximations on classes of analytic functions,” Ukr. Mat. Zh., 52, No. 3, 375–395 (2000); English translation: Ukr. Math. J., 52, No. 3, 433–456 (2000).

  30. O. I. Stepanets’, A. S. Serdyuk, and A. L. Shydlich, “On some new criteria for infinite differentiability of periodic functions,” Ukr. Mat. Zh., 59, No. 10, 1399–1409 (2007); English translation: Ukr. Math. J., 59, No. 10, 1569–1580 (2007).

  31. A. I. Stepanets, A. S. Serdyuk, and A. L. Shidlich, “Classification of infinitely differentiable periodic functions,” Ukr. Mat. Zh., 60, No. 12, 1686–1708 (2008); English translation: Ukr. Math. J., 60, No. 12, 1982–2005 (2008).

  32. S. B. Stechkin, “Estimation of the remainder for the Fourier series of differentiable functions. Approximation of functions by polynomials and splines,” Tr. Mat. Inst. Akad. Nauk SSSR, 145, 126–151 (1980).

    MATH  Google Scholar 

  33. S. A. Telyakovskii, “On the norms of trigonometric polynomials and approximation of differentiable functions by linear means of their Fourier series. I,” Tr. Mat. Inst. Akad. Nauk SSSR, 4, 668–673 (1968).

    Google Scholar 

  34. S. A. Telyakovskii, “Approximation of differentiable functions by partial sums of their Fourier series,” Mat. Zametki, 4, No. 3, 291–300 (1968).

    MathSciNet  Google Scholar 

  35. S. A. Telyakovskii, “Approximation of functions of higher smoothness by Fourier sums,” Ukr. Mat. Zh., 41, No. 4, 510–518 (1989); English translation: Ukr. Math. J., 41, No. 4, 444–451 (1989).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Stepanyuk.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, No. 4, pp. 542–567, April, 2023. Ukrainian DOI: https://doi.org/10.37863/umzh.v75i4.7411.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyuk, A., Stepanyuk, T. Uniform Approximations by Fourier Sums on the Sets of Convolutions of Periodic Functions of High Smoothness. Ukr Math J 75, 621–651 (2023). https://doi.org/10.1007/s11253-023-02220-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02220-8

Navigation