Skip to main content
Log in

Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We find two-sided estimates for the best uniform approximations of classes of convolutions of 2𝜋-periodic functions from a unit ball of the space Lp,1 ≤ p < ∞; with fixed kernels such that the moduli of their Fourier coefficients satisfy the condition \( \sum \limits_{k=n+1}^{\infty}\psi (k)<\psi (n) \): In the case of \( \sum \limits_{k=n+1}^{\infty}\psi (k)=o(1)\psi (n) \); the obtained estimates become the asymptotic equalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer and M. G. Krein, “On the best approximation of differentiable periodic functions by trigonometric polynomials,” Dokl. Akad. Nauk SSSR, 15(3), 107–112 (1937).

    Google Scholar 

  2. N. A. Baraboshkina, “L-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials,” Proc. Steklov Inst. Math., 273(1), 59–67 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. V. Bushanskii, “Best harmonic approximation in the mean of certain functions,” in: Studies in the Theory of Approximation of Functions and Their Applications, Inst. Mat. of the AS of the UkrSSR, Kiev, 1978, pp. 29–37.

    Google Scholar 

  4. V. K. Dzyadyk, “On the best approximation on the classes of periodic functions determined by kernels which are integrals of absolutely monotone functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 23(6), 933–950 (1959).

    MathSciNet  Google Scholar 

  5. V. K. Dzyadyk, “Best approximation on classes of periodic functions defined by integrals of linear combinations of absolutely monotonous kernels,” Mat. Zametki, 16(5), 691–701 (1974).

    MathSciNet  Google Scholar 

  6. A. V. Efimov, “Approximation of continuous periodic functions by Fourier sums,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, 243–296 (1960).

    MathSciNet  Google Scholar 

  7. J. Favard, “Sur l’approximation des fonctions périodiques par des polynomes trigonométriques,” C. R. Acad. Sci., 203, 1122–1124 (1936).

    MATH  Google Scholar 

  8. J. Favard, “Sur les meilleurs procédes d’approximations de certains classes de fontions par des polynomes trigonometriques,” Bull. de Sci. Math., 61, 209–224, 243–256 (1937).

    MATH  Google Scholar 

  9. A. N. Kolmogorov, “On the order of the remainders of the Fourier series of differentiable functions,” in: A. N. Kolmogorov. Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow, 1985, pp. 179–185.

    Google Scholar 

  10. N. P. Korneichuk, “Exact constants in approximation theory,” in: Encyclopedia of Mathematics and its Applications, 38, Cambridge Univ. Press, Cambridge, 1991.

    Google Scholar 

  11. M. G. Krein, “The theory of best approximation of periodic functions,” Dokl. Akad. Nauk SSSR, 18(4–5), 245–249 (1938).

    MATH  Google Scholar 

  12. B. Sz.-Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. 1. Periodischer Fal,” Ber. Math.-Phys. Kl. Akad. Wiss., Leipzig, 90, 103–134 (1938).

    MATH  Google Scholar 

  13. S. M. Nikol’skii, “An asymptotic estimation of the remainder under approximation by Fourier sums,” Dokl. Akad. Nauk SSSR, 32, 386–389 (1941).

    Google Scholar 

  14. S. M. Nikol’skii, “Approximation of functions in the mean by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, 207–256 (1946).

    Google Scholar 

  15. V. T. Pinkevich, “On the order of the remainders of the Fourier series of functions differentiable in the sense of Weyl,” Izv. Akad. Nauk SSSR, Ser. Mat., 4, 521–528 (1940).

    Google Scholar 

  16. A. Pinkus, n-Widths in Approximation Theory, Springer, Berlin, 1985.

    Book  MATH  Google Scholar 

  17. A. S. Serdyuk, “On the best approximation of classes of convolutions of periodic functions by trigonometric polynomials,” Ukr. Math. J., 47(9), 1435–1440 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. S. Serdyuk, “Estimates for the widths and best approximations of classes of convolutions of periodic functions. Fourier series: theory and applications,” Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 20, 286–299 (1998).

    MathSciNet  MATH  Google Scholar 

  19. A. S. Serdyuk, “Widths and best approximations for classes of convolutions of periodic functions,” Ukr. Math. J., 51(5), 748–763 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. S. Serdyuk, “On best approximation in classes of convolutions of periodic functions. Theory of the approximation of functions and related problems,” Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 35, 172–194 (2002).

    MathSciNet  MATH  Google Scholar 

  21. A. S. Serdyuk, “On one linear method of approximation of periodic functions,” Zb. Pr. Inst. Mat. NAN Ukr., 1(1), 294–336 (2004).

    MathSciNet  MATH  Google Scholar 

  22. A. S. Serdyuk, “Best approximations and widths of classes of convolutions of periodic functions of high smoothness,” Ukr. Math. J., 57(7), 1120–1148 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. S. Serdyuk, “Approximation of classes of analytic functions by Fourier sums in the uniform metric,” Ukr. Math. J., 57(8), 1275–1296 (2005).

    Article  MathSciNet  Google Scholar 

  24. A. S. Serdyuk and I. V. Sokolenko, “Asymptotic behavior of best approximations of classes of Poisson integrals of functions from H𝜔,” J. of Appr. Theory, 163(11), 1692–1706 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. S. Serdyuk and I. V. Sokolenko, “Asymptotic equalities for best approximations for classes of infinitely differentiable functions defined by the modulus of continuity,” Math. Notes, 99(5-6), 901–915 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. S. Serdyuk and I. V. Sokolenko, “Approximation by Fourier sums in classes of differentiable functions with high exponents of smoothness,” Meth. Funct. Analys. Topol., 25(4), 381–387 (2019).

    MathSciNet  MATH  Google Scholar 

  27. A. S. Serdyuk and T. A. Stepanyuk, “Uniform approximations by Fourier sums in classes of generalized Poisson integrals,” Analysis Math., 45(1), 201–236 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. T. Shevaldin, “Widths of classes of convolutions with Poisson kernel,” Math. Notes, 51(6), 611–617 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. B. Stechkin, “On the best approximation of certain classes of periodic functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 20(6), 643–648 (1956).

    MathSciNet  Google Scholar 

  30. S. B. Stechkin, “An estimation of the remainders of the Fourier series of differentiable functions,” Tr. Mat. Inst. Akad. Nauk SSSR, 145, 126–151 (1980).

    MathSciNet  MATH  Google Scholar 

  31. A. I. Stepanets, Classification and Approximation of Periodic Functions, Kluwer, Dordrecht, 1995.

    Book  MATH  Google Scholar 

  32. A. I. Stepanets, Methods of Approximation Theory, Utrecht, VSP, 2005.

    Book  MATH  Google Scholar 

  33. A. I. Stepanets and A. S. Serdyuk, “Approximation by Fourier sums and best approximations on classes of analytic functions,” Ukr. Math. J., 52(3), 433–456 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun Yong-sheng, “On the best approximation of periodic differentiable functions by trigonometric polynomials. II,” Izv. Akad. Nauk SSSR Ser. Mat., 25(1), 143–152 (1961).

    MathSciNet  MATH  Google Scholar 

  35. S A. Telyakovskii, “On the norms of trigonometric polynomials and approximation of differentiable functions by the linear means of their Fourier series,” Tr. Mat. Inst. Akad. Nauk SSSR, 62, 61–97 (1961).

  36. S A. Telyakovskii, “Approximation by Fourier sums of functions of high smoothness,” Ukr. Math. J., 41(4), 444–451 (1989).

    Article  MathSciNet  Google Scholar 

  37. S A. Telyakovskii, “On approximation by Fourier sums of differentiable functions of high smoothness,” Proc. Steklov Inst. Math., 1(198), 183–201 (1994).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii S. Serdyuk.

Additional information

Dedicated to the memory of Professor S.B. Stechkin and Professor S.A. Telyakovskii

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 3, pp. 396–413 July–September, 2020.

This work was partially supported by the Grant H2020-MSCA-RISE-2019, project number 873071 (SOMPATY: Spectral Optimization: From Mathematics to Physics and Advanced Technology).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyuk, A.S., Sokolenko, I.V. Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness. J Math Sci 252, 526–540 (2021). https://doi.org/10.1007/s10958-020-05178-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05178-1

Keywords

Navigation