Skip to main content
Log in

Almost Coconvex Approximation of Continuous Periodic Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

If a 2 𝜋 -periodic function f continuous on the real axis changes its convexity at 2s, s ∈ ℕ, inflection points yi : 𝜋 ≤ y2s< y2s−1< ... < y1< 𝜋 and, for all other i ∈ ℤ, yi are periodically defined, then, for any natural n ≥ Nyi, we can find a trigonometric polynomial Pn of order cn such that Pn has the same convexity as f everywhere except, possibly, small neighborhoods of the points yi : (yi 𝜋/n, yi + 𝜋/n) and, moreover,

$$ \left\Vert f-{P}_n\right\Vert \le c(s){\omega}_4\left(f,\uppi /n\right), $$

where Nyi is a constant that depends only on mini=1,...,2s{yi− yi+1}, c and c(s) are constants thatdepend only on s, 𝜔4(f, ·) is the fourth modulus of smoothness of the function f, and ‖⋅‖is the max-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jackson, Über die Genauigkeit der Annaherung Stetiger Funktionen Durch Ganze Rationale Funktionen Gegebenen Grades und Trigonometrische Summen Gegebener Ordnung, Thesis, Gottingen (1911).

  2. A. Zygmund, “Smooth functions,” Duke Math. J., 12, No. 1, 47–76 (1945).

    Article  MathSciNet  Google Scholar 

  3. N. I. Akhiezer, Lectures in Approximation Theory [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  4. S. B. Stechkin, “On the order of the best approximations of continuous functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 15, No. 3, 219–242 (1951).

  5. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  6. G. G. Lorentz and K. L. Zeller, “Degree of approximation by monotone polynomials. I,” J. Approxim. Theory, 1, No. 4, 501–504 (1968).

    Article  MathSciNet  Google Scholar 

  7. P. A. Popov, “An analog of the Jackson inequality for coconvex approximation of periodic functions,” Ukr. Mat. Zh., 53, No. 7, 919–928 (2001); English translation: Ukr. Math. J., 53, No. 7, 1093–1105 (2001).

  8. V. D. Zalizko, “Coconvex approximations of periodic functions,” Ukr. Mat. Zh., 59, No. 1, 29–42 (2007); English translation: Ukr. Math. J., 59, No. 1, 28–44 (2007).

  9. V. D. Zalizko, “A counterexample for the coconvex approximation of periodic functions,” Nauk. Zap.: Zb. Nauk. Stat. Drahomanov Nats. Ped. Univ., Fiz.-Mat. Nauk., No. 6, 91–96 (2006).

  10. A. S. Shvedov, “Orders of coapproximations of functions by algebraic polynomials,” Mat. Zametki, 29, No. 1, 117–130 (1981).

    MathSciNet  MATH  Google Scholar 

  11. R. A. de Vore, D. Leviatan, and I. A. Shevchuk, “Approximation of monotone functions: a counter example,” in: Curves and Surfaces with Applications in CAGD (Chamonix-Mont-Blanc, 1996), Vanderbilt Univ. Press, Nashville (1997), pp. 95–102.

  12. G. A. Dzyubenko and J. Gilewicz, “Nearly coconvex pointwise approximation by cubic splines and polynomials,” East J. Approxim., 12, No. 4, 417–439 (2006).

    MathSciNet  Google Scholar 

  13. G. A. Dzyubenko, J. Gilewicz, and I. A. Shevchuk, “New phenomena in coconvex approximation,” Anal. Math., 32, 113–121 (2006).

    Article  MathSciNet  Google Scholar 

  14. G. A. Dzyubenko, D. Leviatan, and I. A. Shevchuk, “Pointwise estimates of coconvex approximation,” Jaen J. Approxim., 6, No. 2, 261–295 (2014).

    MathSciNet  MATH  Google Scholar 

  15. H. Whitney, “On functions with bounded n-th differences,” J. Math. Pures Appl., 36, No. 9, 67–95 (1957).

    MathSciNet  MATH  Google Scholar 

  16. D. Leviatan and I. A. Shevchuk, “Nearly comonotone approximation. II,” Acta Sci. Math. (Szeged.), 66, 115–135 (2000).

  17. G. A. Dzyubenko and J. Gilewicz, “Copositive approximation of periodic functions,” Acta Math. Hung., 120, No. 4, 301–314 (2006).

    Article  MathSciNet  Google Scholar 

  18. G. A. Dzyubenko, “Nearly comonotone approximation of periodic functions,” Anal. Theory Appl., 33, No. 1, 74–92 (2017).

    Article  MathSciNet  Google Scholar 

  19. H. A. Dzyubenko, “Pointwise estimation for the almost copositive approximation of continuous functions by algebraic polynomials,” Ukr. Mat. Zh., 69, No. 5, 641–649 (2017); English translation: Ukr. Math. J., 69, No. 5, 746–756 (2017).

    Article  MathSciNet  Google Scholar 

  20. D. Leviatan and I. A. Shevchuk, “Nearly comonotone approximation,” J. Approxim. Theory, 95, 53–81 (1998).

    Article  MathSciNet  Google Scholar 

  21. G. A. Dzyubenko, J. Gilewicz, and I. A. Shevchuk, “Piecewise monotone pointwise approximation,” Constr. Approxim., 14, 311–348 (1998).

    Article  MathSciNet  Google Scholar 

  22. G. A. Dzyubenko and M. G. Pleshakov, “Comonotone approximation of periodic functions,” Mat. Zametki, 83, Issue 2, 199–209 (2008).

    Article  MathSciNet  Google Scholar 

  23. M. G. Pleshakov, “Comonotone Jackson’s inequality,” J. Approxim. Theory, 99, 409–421 (1999).

    Article  MathSciNet  Google Scholar 

  24. G. A. Dzyubenko and J. Gilewicz, “Nearly coconvex pointwise approximation,” East J. Approxim., 6, 357–383 (2000).

    MathSciNet  MATH  Google Scholar 

  25. I. A. Shevchuk, Approximation by Polynomials and Traces of Functions Continuous on a Segment [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dzyubenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 3, pp. 353–367, March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzyubenko, G.A. Almost Coconvex Approximation of Continuous Periodic Functions. Ukr Math J 71, 402–418 (2019). https://doi.org/10.1007/s11253-019-01654-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01654-3

Navigation