Skip to main content
Log in

Coconvex Approximation of Periodic Functions

  • Published:
Constructive Approximation Aims and scope

Abstract

Let \({{\widetilde{C}}}\) be the space of continuous \(2\pi \)-periodic functions f, endowed with the uniform norm \(\Vert f\Vert :=\max _{x\in {\mathbb {R}}}|f(x)|\), and denote by \(\omega _k(f,t)\), the k-th modulus of smoothness of f. Denote by \({{\widetilde{C}}}^r\), the subspace of r times continuously differentiable functions \(f\in {{\widetilde{C}}}\), and let \({\mathbb {T}}_n\), be the set of trigonometric polynomials \(T_n\) of degree \(\le n\) (that is, of order \(\le 2n+1\)). Given a set \(Y_s:=\{y_i\}_{i=1}^{2s}\), of 2s points, \(s\ge 1\), such that \(-\pi \le y_1<y_2<\cdots<y_{2s}<\pi \), and a function \(f\in {{\widetilde{C}}}^r\), \(r\ge 3\), that changes convexity exactly at the points \(Y_s\), namely, the points \(Y_s\) are all the inflection points of f. We wish to approximate f by trigonometric polynomials which are coconvex with it, that is, satisfy

$$\begin{aligned} f''(x)T_n''(x)\ge 0,\quad x\in {\mathbb {R}}. \end{aligned}$$

We prove, in particular, that if \(r\ge 3\), then for every \(k,s\ge 1\), there exists a sequence \(\{T_n\}_{n=N}^\infty \), \(N=N(r,k,Y_s)\), of trigonometric polynomials \(T_n\in {\mathbb {T}}_n\), coconvex with f, such that

$$\begin{aligned} \Vert f-T_n\Vert \le \frac{c(r,k,s)}{n^r}\omega _k(f^{(r)},1/n). \end{aligned}$$

It is known that one may not take N independent of \(Y_s\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeVore, R.A.: Pointwise approximation by polynomials and splines. In: Stechkin, S.B., Telyakowskii, S.A. (eds.) Proceedings of Conference on Approximation of Functions, Kalouga 1975, Izdat. Nauka, Moskow, pp. 132–141 (1977)

  2. DeVore, R.A.: Degree of approximation. Approximation theory, II. In: Proceedings of International Symposium, The University of Texas, Austin, 1976. Academic Press, New York, pp. 117–161 (1976)

  3. DeVore, R.A.: Monotone approximation by polynomials. SIAM J. Math. Anal. 8, 906–921 (1977)

    Article  MathSciNet  Google Scholar 

  4. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren der mathematischen Wissenschaft. Springer-Verlag, Berlin (1993)

    Google Scholar 

  5. DeVore, R.A., Yu, X.M.: Pointwise estimates for monotone polynomial approximation. Constr. Approx. 1, 323–331 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dzyadyk, Vladislav K., Shevchuk, Igor A.: Theory of Uniform Approximation of Functions by Polynomials. Walter de Gruyer, Berlin (2008)

    MATH  Google Scholar 

  7. Dzyubenko, G.: Comonotone approximation of twice differentiable periodic functions. Ukr. Math. J. 61, 519–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dzyubenko, G., Pleshakov, M.G.: Comonotone approximation of periodic functions. Math. Notes 83, 180–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dzyubenko, G., Voloshina, V., Yushchenko, L.: Negative results in coconvex approximation of periodic functions. J. Approx. Theory 267(105582), 1–11 (2021)

    MathSciNet  Google Scholar 

  10. Kopotun, K.A., Leviatan, D., Prymak, A., Shevchuk, I.A.: Uniform and pointwise shape preserving approximation (SPA) by algebraic polynomials, see http://www.math.technion.ac.il/sat/papers/16/. Surveys in Approx. Theory 6, 24–74 (2011)

  11. Kopotun, K.A., Leviatan, D., Shevchuk, I.A.: Uniform and pointwise shape preserving approximation (SPA) by algebraic polynomials: an update. SMAI S5, 99–108 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Leviatan, D., Motorna, O.V., Shevchuk, I.A.: No Jackson-type estimates for piecewise \(q\)-monotone, \(q\ge 3\), trigonometric approximation. Ukr. Math. J. 74, 662–675 (2022)

    Article  MATH  Google Scholar 

  13. Leviatan, D., Motorna, O.V., Shevchuk, I.A.: Coconvex approximation by hybrid polynomials. Mediter. J. Math. 19, 245 (2022)

  14. Leviatan, D., Shevchuk, I.A.: Some positive results and counterexamples in comonotone approximation II. J. Approx. Theory 100, 113–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leviatan, D., Shevchuk, I.A.: Coconvex approximation. J. Approx. Theory 118, 20–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leviatan, D., Shevchuk, I.A.: Coconvex polynomial approximation. J. Approx. Theory 121, 100–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorentz, G.G., Zeller, K.L.: Degree of approximation by monotone polynomials. I. J. Approx. Theory 1, 501–504 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Newman, D.J.: Efficient co-monotone approximation. J. Approx. Theory 25(3), 189–192 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pleshakov, M.G.: Comonotone Jackson’s inequality. J. Approx. Theory 99, 409–421 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Popov, P.A.: An analog of the Jackson inequality for coconvex approximation of periodic functions. Ukr. Math. J. 53, 1093–1105 (2001)

    Article  Google Scholar 

  21. Vyazovskaya, M.S., Pupashenko, N.S.: On the normalizing multiplier of the generalized Jackson kernel. Math. Notes 80, 19–26 (2006). Translated from Matematicheskie Zametki, vol. 80, no. 1, pp. 20–28 (2006)

  22. Zalizko, V.D.: Coconvex approximation of periodic functions. Ukr. Math. J. 59, 28–44 (2007) Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 1, pp. 29–43 (January, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leviatan.

Additional information

Communicated by Edward B. Saff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Research Foundation of Ukraine, Project #2020.02/0155.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leviatan, D., Shevchuk, I.A. Coconvex Approximation of Periodic Functions. Constr Approx 57, 695–726 (2023). https://doi.org/10.1007/s00365-022-09597-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-022-09597-y

Keywords

Mathematics Subject Classification

Navigation