Skip to main content
Log in

Sharp Remez-Type Inequalities of Different Metrics for Differentiable Periodic Functions, Polynomials, and Splines

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove a sharp Remez-type inequality of different metrics

$$ {\left\Vert x\right\Vert}_q\le {\left\Vert {\varphi}_r\right\Vert}_q{\left\{\frac{{\left\Vert x\right\Vert}_{L_p\left(\left[0,2\uppi \right]\backslash B\right)}}{{\left\Vert {\varphi}_r\right\Vert}_{L_p\left(\left[0,2\uppi \right]\backslash {B}_1\right)}}\right\}}^{\alpha }{\left\Vert {x}^{(r)}\right\Vert}_{\infty}^{1-\alpha },\kern0.5em q>p>0,\kern0.5em \alpha =\left(r+1/q\right)/\left(r+1/p\right), $$

for 2π -periodic functions x\( {L}_{\infty}^r \) satisfying the condition

where \( L{(x)}_p\coloneq \sup \left\{{\left\Vert x\right\Vert}_{L_p\left[a,b\right]}:\left[a,b\right]\subset \left[0,2\uppi \right],\kern0.5em \left|x(t)\right|>0,\kern0.5em t\in \left(a,b\right)\right\} \), B ⊂ [0, 2π], μB ≤ β/λ (λ is chosen so that \( {\left\Vert x\right\Vert}_p={\left\Vert {\varphi}_{\uplambda, r}\right\Vert}_{L_p\left[0,2\uppi /\uplambda \right]} \)), φ r is the ideal Euler’s spline of order r, and \( {B}_1\coloneq \left[\frac{-\uppi -\beta /2}{2},\frac{-\uppi +\beta /2}{2}\right]\cup \left[\frac{\uppi -\beta /2}{2},\frac{\uppi +\beta /2}{2}\right] \).

As a special case, we establish sharp Remez-type inequalities of different metrics for trigonometric polynomials and polynomial splines satisfying the condition (*).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Comparison of rearrangements and Kolmogorov–Nagy type inequalities for periodic functions,” in: B. Bojanov (editor), Approximation Theory: A Volume Dedicated to Blagovest Sendov, Darba, Sofia (2002), pp. 24–53.

    Google Scholar 

  2. A. Pinkus and O. Shisha, “Variations on the Chebyshev and L q theories of best approximation,” J. Approxim. Theory, 35, No. 2, 148–168 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. A. Kofanov, “Inequalities of different metrics for differentiable periodic functions,” Ukr. Mat. Zh., 67, No. 2, 202–212 (2015); English translation: Ukr. Math. J., 67, No. 2, 230–242 (2015).

  4. B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdos,” J. d’Anal. Math., 78, 263–280 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. A. Kofanov, “Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function,” Ukr. Mat. Zh., 63, No. 7, 969–984 (2011); English translation: Ukr. Math. J., 63, No. 7, 1118–1135 (2011).

  6. E. Remes, “Sur une propriete extremale des polynomes de Tchebychef,” Zap. Nauk.-Doslid. Inst. Mat. Mekh. Kharkiv. Mat. Tov., Ser. 4, 13, Issue 1, 93–95 (1936).

  7. M. I. Ganzburg, “On a Remez-type inequality for trigonometric polynomials,” J. Approxim. Theory, 164, 1233–1237 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Nursultanov and S. Tikhonov, “A sharp Remez inequality for trigonometric polynomials,” Constr. Approxim., 38, 101–132 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York (1995).

    Book  MATH  Google Scholar 

  10. M. I. Ganzburg, “Polynomial inequalities on measurable sets and their applications,” Constr. Approxim., 17, 275–306 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. A. Kofanov, “Sharp Remez-type inequalities for differentiable periodic functions, polynomials, and splines,” Ukr. Mat. Zh., 68, No. 2, 227–240 (2016); English translation: Ukr. Math. J., 68, No. 2, 253–268 (2016).

  12. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

    MATH  Google Scholar 

  13. A. N. Kolmogorov, “On the inequalities between upper bounds of successive derivatives of a function in an infinite interval,” in: Selected Works, Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.

  14. N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  15. V. M. Tikhomirov, “Widths of sets in function spaces and the theory of best approximations,” Usp. Mat. Nauk, 15, No. 3, 81–120 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 2, pp. 173–188, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kofanov, V.A. Sharp Remez-Type Inequalities of Different Metrics for Differentiable Periodic Functions, Polynomials, and Splines. Ukr Math J 69, 205–223 (2017). https://doi.org/10.1007/s11253-017-1357-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1357-z

Navigation