Skip to main content
Log in

Approximation of the Quadratic Partial Sums of Double Walsh–Kaczmarz–Fourier Series by Nörlund Means

  • Published:
Ukrainian Mathematical Journal Aims and scope

We discuss the Nörlund means of quadratic partial sums for theWalsh–Kaczmarz–Fourier series of a function in L p . The rate of approximation by these means is investigated, in particular, in Lip(\( \alpha \) , p), where \( \alpha \) > 0 and 1 ≤ p ≤ ∞. For p = ∞, the set L p turns into the collection of continuous functions C. Our main theorem states that the approximation behavior of these two-dimensional Walsh–Kaczmarz–Nörlund means is as good as the approximation behavior of the one-dimensional Walsh and Walsh–Kaczmarz–Nörlund means.

Earlier, the results for one-dimensional Nörlund means of the Walsh–Fourier series were obtained by M´oricz and Siddiqi [J. Approxim. Theory, 70, No. 3, 375–389 (1992)] and Fridli, Manchanda, and Siddiqi [Acta Sci. Math. (Szeged), 74, 593–608 (2008)]. For one-dimensionalWalsh–Kaczmarz–Nörlund means, the corresponding results were obtained by the author [Georg. Math. J., 18, 147–162 (2011)]. The case of two-dimensional trigonometric systems was studied by Móricz and Rhoades [J. Approxim. Theory, 50, 341–358 (1987)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Agaev, N. Ja. Vilenkin, G. M. Dzhafarli, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on 0-Dimensional Groups [in Russian], ELM, Baku (1981).

  2. I. Blahota and G. Gát, “Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups,” Anal. Theory Appl., 24, No. 1, 1–17 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Fridli, P. Manchanda, and A. H. Siddiqi, “Approximation by Walsh–Nörlund means,” Acta Sci. Math. (Szeged), 74, 593–608 (2008).

    MathSciNet  MATH  Google Scholar 

  4. G. Gát, “On (C, 1) summability of integrable functions with respect to the Walsh–Kaczmarz system,” Stud. Math., 130, No. 2, 135–148 (1998).

    MathSciNet  MATH  Google Scholar 

  5. G. Gát and U. Goginava, “Uniform and L-convergence of logarithmic means of Walsh–Fourier series,” Acta Math. Sinica, Eng. Ser., 22, No. 2, 497–506 (2006).

  6. G. Gát and U. Goginava, “Uniform and L-convergence of logarithmic means of cubical partial sums of doubleWalsh–Fourier series,” E. J. Approxim., 10, No. 3, 391–412 (2004).

    MATH  Google Scholar 

  7. G. Gát, U. Goginava, and K. Nagy, “Marcinkiewicz–Fejér means of double Fourier series with respect to the Walsh–Kaczmarz system,” Stud. Sci. Math. Hung., 46, No. 3, 399–421 (2009).

    MATH  Google Scholar 

  8. V. A. Glukhov, “On the summability of multiple Fourier series with respect to multiplicative systems,” Mat. Zametki, 39, 665–673 (1986).

    MathSciNet  Google Scholar 

  9. U. Goginava and G. Tkebuchava, “Convergence of subsequences of partial sums and logarithmic means of Walsh–Fourier series,” Acta Sci. Math. (Szeged), 72, 159–177 (2006).

    MathSciNet  MATH  Google Scholar 

  10. U. Goginava, “On the approximation properties of Cesàro means of negative order of Walsh–Fourier series,” J. Approxim. Theory, 115, 9–20 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Goginava, “Almost everywhere convergence of (C, \( \alpha \))-means of cubical partial sums of d-dimensional Walsh–Fourier series,” J. Approxim. Theory, 141, No. 1, 8–28 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. U. Goginava, “On the uniform convergence and L-convergence of double Fourier series with respect to the Walsh–Kaczmarz system,” Georg. Math. J., 10, 223–235 (2003).

    MathSciNet  MATH  Google Scholar 

  13. U. Goginava, “Approximation properties of (C, \( \alpha \)) means of double Walsh–Fourier series,” Anal. Theory Appl., 20, No. 1, 77–98 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. A. Jastrebova, “On approximation of functions satisfying the Lipschitz condition by arithmetic means of their Walsh–Fourier series,” Math. Sb., 71, 214–226 (1966).

    MathSciNet  MATH  Google Scholar 

  15. F. Móricz and B. E. Rhoades, “Approximation by Nörlund means of double Fourier series for Lipschitz functions,” J. Approxim. Theory, 50, 341–358 (1987).

    Article  MATH  Google Scholar 

  16. F. Móricz and F. Schipp, “On the integrability and L 1 convergence of Walsh series with coefficients of bounded variation,” J. Math. Anal. Appl., 146, No. 1, 99–109 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Móricz and A. Siddiqi, “Approximation by Nörlund means of Walsh–Fourier series,” J. Approxim. Theory, 70, No. 3, 375–389 (1992).

    Article  MATH  Google Scholar 

  18. K. Nagy, “Approximation by Nörlund means of Walsh–Kaczmarz–Fourier series,” Georg. Math. J., 18, 147–162 (2011).

    MATH  Google Scholar 

  19. K. Nagy, “Approximation by Nörlund means of quadratic partial sums of double Walsh–Fourier series,” Anal. Math., 36, No. 4, 299–319 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Nagy, “On the two-dimensional Marcinkiewicz means with respect toWalsh–Kaczmarz system,” J. Approxim. Theory, 142, No. 2, 138–165 (2006).

    Article  MATH  Google Scholar 

  21. K. Nagy, “Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series,” E. J. Approxim., 16, No. 3, 193–207 (2010).

    MATH  Google Scholar 

  22. K. Nagy, “Approximation by Cesàro means of negative order of double Walsh–Kaczmarz–Fourier series,” Tohoku Math. J., 64, No. 3, 317–331 (2012).

    Article  MATH  Google Scholar 

  23. F. Schipp, W. R. Wade, P. Simon, and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol; New York (1990).

  24. F. Schipp, “Pointwise convergence of expansions with respect to certain product systems,” Anal. Math., 2, 63–75 (1976).

    MathSciNet  MATH  Google Scholar 

  25. P. Simon, “(C, \( \alpha \)) summability of Walsh–Kaczmarz–Fourier series,” J. Approxim. Theory, 127, 39–60 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. A. Skvortsov, “On Fourier series with respect to the Walsh–Kaczmarz system,” Anal. Math., 7, 141–150 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. A. Skvortsov, “Some estimates of the approximation of functions by Cesàro means of Walsh–Fourier series,” Mat. Zametki, 29, 539–547 (1981).

    MathSciNet  MATH  Google Scholar 

  28. A. A. Šneider, “On series with respect to the Walsh functions with monotone coefficients,” Izv. Akad. Nauk SSSR. Ser. Mat., 12, 179–192 (1948).

    Google Scholar 

  29. L. E. Persson, G. Tephnadze, and P.Wall, “Maximal operators of Vilenkin–Nörlund means,” J. Fourier Anal. Appl., 21, No. 1, 76–94 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Tephnadze, “On the maximal operator ofWalsh–Kaczmarz–Nörlund means,” Acta Math. Acad. Paed. Nyíregyháziensis, 31, No. 2, 259–271 (2015).

    MathSciNet  MATH  Google Scholar 

  31. Sh. Yano, “On Walsh series,” Tohoku Math. J., 3, 223–242 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  32. Sh. Yano, “On approximation by Walsh functions,” Proc. Amer. Math. Soc., 2, 962–967 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  33. W. S. Young, “On the a.e. convergence of Walsh–Kaczmarz–Fourier series,” Proc. Amer. Math. Soc., 44, 353–358 (1974).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 1, pp. 87–105, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, K. Approximation of the Quadratic Partial Sums of Double Walsh–Kaczmarz–Fourier Series by Nörlund Means. Ukr Math J 68, 94–114 (2016). https://doi.org/10.1007/s11253-016-1211-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-016-1211-8

Navigation