Skip to main content
Log in

Identification and in silico characterization of structural and functional impacts of genetic variants in milk protein genes in the Zebu breeds Guzerat and Gyr

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Whole genome sequencing of bovine breeds has allowed identification of genetic variants in milk protein genes. However, functional repercussion of such variants at a molecular level has seldom been investigated. Here, the results of a multistep Bioinformatic analysis for functional characterization of recently identified genetic variants in Brazilian Gyr and Guzerat breeds is described, including predicted effects on the following: (i) evolutionary conserved nucleotide positions/regions; (ii) protein function, stability, and interactions; (iii) splicing, branching, and miRNA binding sites; (iv) promoters and transcription factor binding sites; and (v) collocation with QTL. Seventy-one genetic variants were identified in the caseins (CSN1S1, CSN2, CSN1S2, and CSN3), LALBA, LGB, and LTF genes. Eleven potentially regulatory variants and two missense mutations were identified. LALBA Ile60Val was predicted to affect protein stability and flexibility, by reducing the number the disulfide bonds established. LTF Thr546Asn is predicted to generate steric clashes, which could mildly affect iron coordination. In addition, LALBA Ile60Val and LTF Thr546Asn affect exonic splicing enhancers and silencers. Consequently, both mutations have the potential of affecting immune response at individual level, not only in the mammary gland. Although laborious, this multistep procedure for classifying variants allowed the identification of potentially functional variants for milk protein genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used in this paper are listed in the Tables or Supplementary material. Additional data are available under request.

Code availability

Not applicable.

References

  • Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S. and Sunyaev, S.R., 2010. A method and server for predicting damaging missense mutations Nature methods, https://doi.org/10.1038/nmeth0410-248

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed, A.S., Rahmatalla, S., Bortfeldt, R., Arends, D., Reissmann, M. and Brockmann, G.A., 2017. Milk protein polymorphisms and casein haplotypes in Butana cattle Journal of Applied Genetics, https://doi.org/10.1007/s13353-016-0381-2

    Article  PubMed  Google Scholar 

  • Alessio, D.R.M., Velho, J.P., Tambara, A.A.C., de Oliveira Gomes, I.P., Knob, D.A., Haygert-Velho, I.M.P., Busanello, M. and Thaler Neto, A., 2020. Dietary roughage sources affect lactating Holstein x Zebu cows under experimental conditions in Brazil: a meta-analysis Tropical Animal Health and Production, https://doi.org/10.1007/s11250-019-02005-x

  • An, X., Song, Y., Hou, J., Li, G., Zhao, H., Wang, J. and Cao, B., 2016. Identification and profiling of microRNAs in the ovaries of polytocous and monotocous goats during estrus Theriogenology, https://doi.org/10.1016/j.theriogenology.2015.09.056

    Article  PubMed  Google Scholar 

  • Andrade, G.M., Meirelles, F. V., Perecin, F. and da Silveira, J.C., 2017. Cellular and extracellular vesicular origins of miRNAs within the bovine ovarian follicle Reproduction in Domestic Animals, https://doi.org/10.1111/rda.13021

    Article  PubMed  Google Scholar 

  • Araújo, T.P.M., Rangel, A.H. do N., Lima, G.F. da C., Peixoto, M.G.C.D., Urbano, S.A. and Bezerra, J. da S., 2018. Gir and guzerat cow milk production and composition according to lactation stage, somatic cell count, physiological state and body condition Acta Scientiarum - Animal Sciences, https://doi.org/10.4025/actascianimsci.v40i1.39352

  • Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I. and Stockinger, H., 2012. ExPASy: SIB bioinformatics resource portal Nucleic Acids Research, https://doi.org/10.1093/nar/gks400

  • Asadollahpour Nanaei, H., Dehghani Qanatqestani, M. and Esmailizadeh, A., 2020. Whole-genome resequencing reveals selection signatures associated with milk production traits in African Kenana dairy zebu cattle Genomics, https://doi.org/10.1016/j.ygeno.2019.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, E.N. and Baker, H.M., 2005. Molecular structure, binding properties and dynamics of lactoferrin Cellular and Molecular Life Sciences, https://doi.org/10.1007/s00018-005-5368-9

  • Beck, A.L., Heyman, M., Chao, C. and Wojcicki, J., 2017. Full fat milk consumption protects against severe childhood obesity in Latinos Preventive Medicine Reports, https://doi.org/10.1016/j.pmedr.2017.07.005

  • Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D. and Zardecki, C., 2002. The protein data bank Acta Crystallographica Section D: Biological Crystallography, https://doi.org/10.1107/S0907444902003451

    Article  Google Scholar 

  • Betel, D., Wilson, M., Gabow, A., Marks, D.S. and Sander, C., 2008. The microRNA.org resource: Targets and expression Nucleic Acids Research, https://doi.org/10.1093/nar/gkm995

  • Buitenhuis, B., Poulsen, N.A., Gebreyesus, G. and Larsen, L.B., 2016. Estimation of genetic parameters and detection of chromosomal regions affecting the major milk proteins and their post translational modifications in Danish Holstein and Danish Jersey cattle BMC Genetics, https://doi.org/10.1186/s12863-016-0421-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Cartegni, L., Wang, J., Zhu, Z., Zhang, M.Q. and Krainer, A.R., 2003. ESEfinder: A web resource to identify exonic splicing enhancers Nucleic Acids Research, https://doi.org/10.1093/nar/gkg616

  • Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M. and Werner, T., 2005. MatInspector and beyond: Promoter analysis based on transcription factor binding sites Bioinformatics, https://doi.org/10.1093/bioinformatics/bti473

    Article  PubMed  Google Scholar 

  • Cecchinato, A., Ribeca, C., Maurmayr, A., Penasa, M., De Marchi, M., Macciotta, N.P.P., Mele, M., Secchiari, P., Pagnacco, G. and Bittante, G., 2012. Short communication: Effects of β-lactoglobulin, stearoyl-coenzyme A desaturase 1, and sterol regulatory element binding protein gene allelic variants on milk production, composition, acidity, and coagulation properties of Brown Swiss cows Journal of Dairy Science, https://doi.org/10.3168/jds.2011-4581

  • Chaudhuri, A. and Chattopadhyay, A., 2014. Lipid binding specificity of bovine α-lactalbumin: A multidimensional approach Biochimica et Biophysica Acta - Biomembranes, https://doi.org/10.1016/j.bbamem.2014.04.027

    Article  Google Scholar 

  • Corpet, F., 1988. Multiple sequence alignment with hierarchical clustering Nucleic Acids Research, https://doi.org/10.1093/nar/16.22.10881

    Article  PubMed  PubMed Central  Google Scholar 

  • da Costa, N.S., da Silva, M.V.G.B., Panetto, J.C. do C., Machado, M.A., Seixas, L., Peripolli, V., Guimarães, R.F., Carvalho, O.A., Vieira, R.A. and McManus, C., 2020. Spatial dynamics of the Girolando breed in Brazil: analysis of genetic integration and environmental factors Tropical Animal Health and Production, https://doi.org/10.1007/s11250-020-02426-z

  • De Paiva Daibert, R.M., De Biagi Junior, C.A.O., De Oliveira Vieira, F., Da Silva, M.V.G.B., Hottz, E.D., Pinheiro, M.B.M., De Lima Reis Faza, D.R., Pereira, H.P., Martins, M.F., De Mello Brandão, H., Machado, M.A. and Carvalho, W.A., 2020. Lipopolysaccharide triggers different transcriptional signatures in taurine and indicine cattle macrophages: Reactive oxygen species and potential outcomes to the development of immune response to infections PLoS ONE, https://doi.org/10.1371/journal.pone.0241861

  • de Vasconcelos, A.M., de Albuquerque, C.C., de Carvalho, J.F., Façanha, D.A.E., Lima, F.R.G., Silveira, R.M.F. and Ferreira, J., 2020. Adaptive profile of dairy cows in a tropical region International Journal of Biometeorology, https://doi.org/10.1007/s00484-019-01797-9

    Article  PubMed  Google Scholar 

  • Desmet, F.O., Hamroun, D., Lalande, M., Collod-Bëroud, G., Claustres, M. and Béroud, C., 2009. Human Splicing Finder: An online bioinformatics tool to predict splicing signals Nucleic Acids Research, https://doi.org/10.1093/nar/gkp215

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinesh, K., Verma, A., Gupta, I. Das, Thakur, Y.P., Verma, N. and Arya, A., 2015. Identification of polymorphism in exons 7 and 12 of lactoferrin gene and its association with incidence of clinical mastitis in Murrah buffalo Tropical Animal Health and Production, https://doi.org/10.1007/s11250-015-0765-z

  • Fairbrother, W.G., Yeh, R.F., Sharp, P.A. and Burge, C.B., 2002. Predictive identification of exonic splicing enhancers in human genes Science, https://doi.org/10.1126/science.1073774

    Article  PubMed  Google Scholar 

  • Fang, B., Zhang, M., Tian, M., Jiang, L., Guo, H.Y. and Ren, F.Z., 2014. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, https://doi.org/10.1016/j.bbalip.2013.12.008

    Article  PubMed  Google Scholar 

  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E.L.L., Tate, J. and Punta, M., 2014. Pfam: The protein families database Nucleic acids research, https://doi.org/10.1093/nar/gkt1223

  • Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H. and O’Mahony, J.A., 2015. Chemistry and biochemistry of cheese Dairy Chemistry and Biochemistry, https://doi.org/10.1007/978-3-319-14892-2_12

    Article  Google Scholar 

  • Franzoi, M., Niero, G., Visentin, G., Penasa, M., Cassandro, M. and de Marchi, M., 2019. Variation of detailed protein composition of cow milk predicted from a large database of mid-infrared spectra Animals, https://doi.org/10.3390/ani9040176

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Y., Lin, X., Shi, K., Yan, Z. and Wang, Z., 2013. Bovine Mammary Gene Expression Profiling during the Onset of Lactation PLoS ONE, https://doi.org/10.1371/journal.pone.0070393

    Article  PubMed  PubMed Central  Google Scholar 

  • Givens, D.I., 2020. MILK Symposium review: The importance of milk and dairy foods in the diets of infants, adolescents, pregnant women, adults, and the elderly Journal of Dairy Science, https://doi.org/10.3168/jds.2020-18296

  • Glazov, E.A., Kongsuwan, K., Assavalapsakul, W., Horwood, P.F., Mitter, N. and Mahony, T.J., 2009. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection PLoS ONE, https://doi.org/10.1371/journal.pone.0006349

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Chávez, S.A., Arévalo-Gallegos, S. and Rascón-Cruz, Q., 2009. Lactoferrin: structure, function and applications International journal of antimicrobial agents, https://doi.org/10.1016/j.ijantimicag.2008.07.020

  • Grant, J.R., Arantes, A.S., Liao, X. and Stothard, P., 2011. In-depth annotation of SNPs arising from resequencing projects using NGS-SNP Bioinformatics, https://doi.org/10.1093/bioinformatics/btr372

    Article  PubMed  PubMed Central  Google Scholar 

  • Guantario, B., Giribaldi, M., Devirgiliis, C., Finamore, A., Colombino, E., Capucchio, M.T., Evangelista, R., Motta, V., Zinno, P., Cirrincione, S., Antoniazzi, S., Cavallarin, L. and Roselli, M., 2020. A comprehensive evaluation of the impact of bovine milk containing different beta-casein profiles on gut health of ageing mice Nutrients, https://doi.org/10.3390/nu12072147

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, R., Jung, E. and Brunak, S., 2004. NetNGlyc: Prediction of N-glycosylation sites in human proteins Pac Symp Biocomput, PMID: 11928486y

  • Gutierrez-Reinoso, M.A., Aponte, P.M. and Garcia-Herreros, M., 2021. Genomic analysis, progress and future perspectives in dairy cattle selection: A review Animals, https://doi.org/10.3390/ani11030599

  • Hamborg, M., Rose, F., Jorgensen, L., Bjorklund, K., Pedersen, H.B., Christensen, D. and Foged, C., 2014. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems: Effect of charge, fluidity and antigen-to-lipid ratio Biochimica et Biophysica Acta - Biomembranes, https://doi.org/10.1016/j.bbamem.2014.04.013

  • Hendrix, T.M., Griko, Y. and Privalov, P., 1996. Energetics of structural domains in α-lactalbumin Protein Science, https://doi.org/10.1002/pro.5560050514

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiendleder, S., Thomsen, H., Reinsch, N., Bennewitz, J., Leyhe-Horn, B., Looft, C., Xu, N., Medjugorac, I., Russ, I., Kühn, C., Brockmann, G.A., Blümel, J., Brenig, B., Reinhardt, F., Reents, R., Averdunk, G., Schwerin, M., Förster, M., Kalm, E. and Erhardt, G., 2003. Mapping of QTL for Body Conformation and Behavior in Cattle Journal of Heredity, https://doi.org/10.1093/jhered/esg090

    Article  Google Scholar 

  • Hooper, H.B., Titto, C.G., Gonella-Diaza, A.M., Henrique, F.L., Pulido-Rodríguez, L.F., Longo, A.L.S., Leme-dos-Santos, T.M. da C., Geraldo, A.C.A.P. de M., Pereira, A.M.F., Binelli, M., Balieiro, J.C. de C. and Titto, E.A.L., 2019. Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions International Journal of Biometeorology, https://doi.org/10.1007/s00484-018-1576-5

  • IBGE, 2020. Indicadores IBGE - Levantamento Sistemático da Produção Agrícola (Março/2019 Ibge

  • Jiang, S., Ren, Z., Xie, F., Yan, J., Huang, S. and Zeng, Y., 2012. Bovine prolactin elevates hTF expression directed by a tissue-specific goat β-casein promoter through prolactin receptor-mediated STAT5a activation Biotechnology Letters, https://doi.org/10.1007/s10529-012-1009-1

  • Kamiński, S., Cieślińska, A. and Kostyra, E., 2007. Polymorphism of bovine beta-casein and its potential effect on human health Journal of applied genetics, https://doi.org/10.1007/BF03195213

  • Kang, J.F., Li, X.L., Zhou, R.Y., Li, L.H., Feng, F.J. and Guo, X.L., 2008. Bioinformatics analysis of lactoferrin gene for several species Biochemical Genetics, https://doi.org/10.1007/s10528-008-9147-9

    Article  PubMed  Google Scholar 

  • Karav, S., German, J.B., Rouquié, C., Le Parc, A. and Barile, D., 2017. Studying lactoferrin N-glycosylation International journal of molecular sciences, https://doi.org/10.3390/ijms18040870

  • Kishore, A., Mukesh, M., Sobti, R.C., Kataria, R.S., Mishra, B.P. and Sodhi, M., 2014. Analysis of genetic variations across regulatory and coding regions of kappa-casein gene of Indian native cattle (Bos indicus and buffalo (Bubalus bubalis Meta Gene, https://doi.org/10.1016/j.mgene.2014.10.001

  • Kishore, A., Mukesh, M., Sobti, R.C., Mishra, B.P. and Sodhi, M., 2013. Variations in the Regulatory Region of Alpha S1-Casein Milk Protein Gene among Tropically Adapted Indian Native (Bos Indicus Cattle ISRN Biotechnology, https://doi.org/10.5402/2013/926025

  • Kishore, A., Sodhi, M., Mukesh, M., Mishra, B.P. and Sobti, R.C., 2013. Sequence analysis and identification of new variations in the 5’-flanking region of αs2-casein gene in Indian zebu cattle Molecular Biology Reports, https://doi.org/10.1007/s11033-013-2539-x

  • Knudsen, S., 1999. Promoter2.0: For the recognition of PolII promoter sequences Bioinformatics, https://doi.org/10.1093/bioinformatics/15.5.356

  • Lacorte, G.A., Machado, M.A., Martinez, M.L., Campos, A.L., Maciel, R.P., Verneque, R.S., Teodoro, R.L., Peixoto, M.G.C.D., Carvalho, M.R.S. and Fonseca, C.G., 2006. DGAT1 K232A polymorphism in Brazilian cattle breeds Genetics and Molecular Research, PMID: 17117362

  • Laskowski, R.A., Hutchinson, E.G., Michie, A.D., Wallace, A.C., Jones, M.L. and Thornton, J.M., 1997. PDBsum: A Web-based database of summaries and analyses of all PDB structures Trends in biochemical sciences, https://doi.org/10.1016/S0968-0004(97)01140-7

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures Journal of Applied Crystallography, https://doi.org/10.1107/s0021889892009944

  • Le, A., Barton, L.D., Sanders, J.T. and Zhang, Q., 2011. Exploration of bovine milk proteome in colostral and mature whey using an ion-exchange approach Journal of Proteome Research, https://doi.org/10.1021/pr100884z

    Article  PubMed  Google Scholar 

  • Le, T.T., Deeth, H.C. and Larsen, L.B., 2017. Proteomics of major bovine milk proteins: Novel insights International Dairy Journal, https://doi.org/10.1016/j.idairyj.2016.11.016

    Article  Google Scholar 

  • Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data Bioinformatics, https://doi.org/10.1093/bioinformatics/btr509

  • Li, R., Zhang, C.L., Liao, X.X., Chen, D., Wang, W.Q., Zhu, Y.H., Geng, X.H., Ji, D.J., Mao, Y.J., Gong, Y.C. and Yang, Z.P., 2015. Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus International Journal of Molecular Sciences, https://doi.org/10.3390/ijms16034997

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, X., Peng, F., Forni, S., McLaren, D., Plastow, G. and Stothard, P., 2013. Whole genome sequencing of Gir cattle for identifying polymorphisms and loci under selection Genome, https://doi.org/10.1139/gen-2013-0082

    Article  PubMed  Google Scholar 

  • Liu, F.J., Jin, L.J., Ma, X.G., Zhang, Y.L., Zhai, X.W., Chen, J.J. and Yang, X.Y., 2014. Differentially expressed microRNAs and affected signaling pathways in placentae of transgenic cloned cattle Theriogenology, https://doi.org/10.1016/j.theriogenology.2014.04.010

    Article  PubMed  Google Scholar 

  • Low, W.Y., Tearle, R., Liu, R., Koren, S., Rhie, A., Bickhart, D.M., Rosen, B.D., Kronenberg, Z.N., Kingan, S.B., Tseng, E., Thibaud-Nissen, F., Martin, F.J., Billis, K., Ghurye, J., Hastie, A.R., Lee, J., Pang, A.W.C., Heaton, M.P., Phillippy, A.M., Hiendleder, S., Smith, T.P.L. and Williams, J.L., 2020. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle Nature Communications, https://doi.org/10.1038/s41467-020-15848-y

    Article  Google Scholar 

  • Maity, S., Bhat, A.H., Giri, K. and Ambatipudi, K., 2020. BoMiProt: A database of bovine milk proteins Journal of Proteomics, https://doi.org/10.1016/j.jprot.2020.103648

  • Malewski, T., 1998. Computer analysis of distribution of putative cis- and trans- regulatory elements in milk protein gene promoters BioSystems, https://doi.org/10.1016/S0303-2647(9700059-2)

    Article  PubMed  Google Scholar 

  • Malewski, T., Gajewska, M. and Zwierzchowski, L., 2005. Changes in DNA-binding activity of transcription factors in the differentiating bovine mammary gland Animal Science Papers and Reports, https://doi.org/10.1054/ghir.2002.0259

  • Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A., Scheremetjew, M., Rato, C., Yong, S.Y., Bateman, A., Punta, M., Attwood, T.K., Sigrist, C.J.A., Redaschi, N., Rivoire, C., Xenarios, I., Kahn, D., Guyot, D., Bork, P., Letunic, I., Gough, J., Oates, M., Haft, D., Huang, H., Natale, D.A., Wu, C.H., Orengo, C., Sillitoe, I., Mi, H., Thomas, P.D. and Finn, R.D., 2015. The InterPro protein families database: The classification resource after 15 years Nucleic Acids Research, https://doi.org/10.1093/nar/gku1243

  • Moore, S.A., Anderson, B.F., Groom, C.R., Haridas, M. and Baker, E.N., 1997. Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution Journal of Molecular Biology, https://doi.org/10.1006/jmbi.1997.1386

  • Mosig, M.O., Lipkin, E., Khutoreskaya, G., Tchourzyna, E., Soller, M. and Friedmann, A., 2001. A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion Genetics, https://doi.org/10.1093/genetics/157.4.1683

  • Nadeem, A., Sanborn, J., Gettel, D.L., James, H.C.S., Rydström, A., Ngassam, V.N., Klausen, T.K., Pedersen, S.F., Lam, M., Parikh, A.N. and Svanborg, C., 2015. Protein receptor-independent plasma membrane remodeling by HAMLET: A tumoricidal protein-lipid complex Scientific Reports, https://doi.org/10.1038/srep16432

    Article  PubMed  Google Scholar 

  • O’Halloran, F., Bahar, B., Buckley, F., O’Sullivan, O., Sweeney, T. and Giblin, L., 2009. Characterisation of single nucleotide polymorphisms identified in the bovine lactoferrin gene sequences across a range of dairy cow breeds Biochimie, https://doi.org/10.1016/j.biochi.2008.05.011

    Article  PubMed  Google Scholar 

  • Ortega-Anaya, J. and Jiménez-Flores, R., 2019. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development In:, Journal of Dairy Science,

  • Otto, P.I., Guimarães, S.E.F., Verardo, L.L., Azevedo, A.L.S., Vandenplas, J., Sevillano, C.A., Marques, D.B.D., Pires, M. de F.A., de Freitas, C., Verneque, R.S., Martins, M.F., Panetto, J.C.C., Carvalho, W.A., Gobo, D.O.R., da Silva, M.V.G.B. and Machado, M.A., 2019. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle Journal of Dairy Science, https://doi.org/10.3168/jds.2018-15305

  • Ovcharenko, I., Loots, G.G., Giardine, B.M., Hou, M., Ma, J., Hardison, R.C., Stubbs, L. and Miller, W., 2005. Mulan: Multiple-sequence local alignment and visualization for studying function and evolution Genome Research, 15, 184–194

  • Ovcharenko, I., Nobrega, M.A., Loots, G.G. and Stubbs, L., 2004. ECR Browser: A tool for visualizing and accessing data from comparisons of multiple vertebrate genomes Nucleic Acids Research, https://doi.org/10.1093/nar/gkh355

    Article  PubMed  Google Scholar 

  • Pauciullo, A., Giambra, I.J., Iannuzzi, L. and Erhardt, G., 2014. The β-casein in camels: Molecular characterization of the CSN2 gene, promoter analysis and genetic variability Gene, https://doi.org/10.1016/j.gene.2014.06.055

  • Pausch, H., MacLeod, I.M., Fries, R., Emmerling, R., Bowman, P.J., Daetwyler, H.D. and Goddard, M.E., 2017. Evaluation of the accuracy of imputed sequence variant genotypes and their utility for causal variant detection in cattle Genetics Selection Evolution, https://doi.org/10.1186/s12711-017-0301-x

    Article  Google Scholar 

  • Pires, D.E.V., Ascher, D.B. and Blundell, T.L., 2014a. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach Nucleic Acids Research, https://doi.org/10.1093/nar/gku411

  • Pires, D.E.V., Ascher, D.B. and Blundell, T.L., 2014b. MCSM: Predicting the effects of mutations in proteins using graph-based signatures Bioinformatics, https://doi.org/10.1093/bioinformatics/btt691

  • Qian, X. and Zhao, F.Q., 2016. Regulatory roles of Oct proteins in the mammary gland Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, https://doi.org/10.1016/j.bbagrm.2016.03.015

    Article  Google Scholar 

  • Rodrigues, C.H.M., Myung, Y., Pires, D.E.V. and Ascher, D.B., 2019. MCSM-PPI2: predicting the effects of mutations on protein-protein interactions Nucleic Acids Research, https://doi.org/10.1093/nar/gkz383

  • Rodrigues, C.H.M., Pires, D.E.V. and Ascher, D.B., 2018. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability Nucleic Acids Research, https://doi.org/10.1093/nar/gky300

  • Romao, J.M., Jin, W., He, M., McAllister, T. and Guan, L.L., 2014. MicroRNAs in bovine adipogenesis: Genomic context, expression and function BMC Genomics, https://doi.org/10.1186/1471-2164-15-137

  • Rosse, I.C., Assis, J.G., Oliveira, F.S., Leite, L.R., Araujo, F., Zerlotini, A., Volpini, A., Dominitini, A.J., Lopes, B.C., Arbex, W.A., Machado, M.A., Peixoto, M.G.C.D., Verneque, R.S., Martins, M.F., Coimbra, R.S., Silva, M.V.G.B., Oliveira, G. and Carvalho, M.R.S., 2017. Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance Mammalian Genome, https://doi.org/10.1007/s00335-016-9670-7

  • Russo, V., Fontanesi, L., Dolezal, M., Lipkin, E., Scotti, E., Zambonelli, P., Dall’Olio, S., Bigi, D., Davoli, R., Canavesi, F., Medugorac, I., Föster, M., Sölkner, J., Schiavini, F., Bagnato, A. and Soller, M., 2012. A whole genome scan for QTL affecting milk protein percentage in Italian Holstein cattle, applying selective milk DNA pooling and multiple marker mapping in a daughter design Animal Genetics, https://doi.org/10.1111/j.1365-2052.2012.02353.x

  • Sah, B.N.P., Vasiljevic, T., Mckechnie, S. and Donkor, O.N., 2015. Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: A critical review Comprehensive Reviews in Food Science and Food Safety, https://doi.org/10.1111/1541-4337.12126

    Article  PubMed  Google Scholar 

  • Scherf, M., Klingenhoff, A. and Werner, T., 2000. Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: A novel context analysis approach Journal of Molecular Biology, https://doi.org/10.1006/jmbi.2000.3589

    Article  PubMed  Google Scholar 

  • Schrödinger, L., 2015. The PyMol Molecular Graphics System, Versión 1.8

    Google Scholar 

  • Sebastiani et al., 2020.

  • Sebastiani, C., Arcangeli, C., Ciullo, M., Torricelli, M., Cinti, G., Fisichella, S. and Biagetti, M., 2020. Frequencies evaluation of β-Casein gene polymorphisms in dairy cows reared in central Italy Animals, https://doi.org/10.3390/ani10020252

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengar, G.S., Deb, R., Singh, U., Raja, T. V., Kant, R., Sajjanar, B., Alex, R., Alyethodi, R.R., Kumar, A., Kumar, S., Singh, R., Jakhesara, S.J. and Joshi, C.G., 2018. Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus crossbred dairy cattle Cell Stress and Chaperones, https://doi.org/10.1007/s12192-017-0833-6

  • Shapiro, M.B. and Senapathy, P., 1987. RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression Nucleic Acids Research, https://doi.org/10.1093/nar/15.17.7155

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, S., Sinha, M., Kaushik, S., Kaur, P. and Singh, T.P., 2013. C-lobe of lactoferrin: The whole story of the half-molecule Biochemistry research international, https://doi.org/10.1155/2013/271641

  • Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G. and Ng, P.C., 2012. SIFT web server: Predicting effects of amino acid substitutions on proteins Nucleic Acids Research, https://doi.org/10.1093/nar/gks539

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, K., Phyn, C.V.C., Reinsch, M., Dobson, J.M., Oden, K., Davis, S.R., Stelwagen, K., Henderson, H. V. and Molenaar, A.J., 2017. Temporal and spatial heterogeneity in milk and immune-related gene expression during mammary gland involution in dairy cows Journal of Dairy Science, https://doi.org/10.3168/jds.2017-12572

    Article  PubMed  Google Scholar 

  • Sironi, M., Menozzi, G., Riva, L., Cagliani, R., Comi, G.P., Bresolin, N., Giorda, R. and Pozzoli, U., 2004. Silencer elements as possible inhibitors of pseudoexon splicing Nucleic Acids Research, https://doi.org/10.1093/nar/gkh341

    Article  PubMed  PubMed Central  Google Scholar 

  • Stafuzza, N.B., Zerlotini, A., Lobo, F.P., Yamagishi, M.E.B., Chud, T.C.S., Caetano, A.R., Munari, D.P., Garrick, D.J., Machado, M.A., Martins, M.F., Carvalho, M.R., Cole, J.B. and Da Silva, M.V.G.B., 2017. Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds PLoS ONE, https://doi.org/10.1371/journal.pone.0173954

    Article  Google Scholar 

  • Superti, F., 2020. Lactoferrin from bovine milk: A protective companion for life Nutrients, https://doi.org/10.3390/nu12092562

    Article  PubMed  PubMed Central  Google Scholar 

  • Szymanowska, M., Malewski, T. and Zwierzchowski, L., 2004. Transcription factor binding to variable nucleotide sequences in 5′-flanking regions of bovine casein genes International Dairy Journal, https://doi.org/10.1016/S0958-6946(0300153-5

  • Tang, H. and Thomas, P.D., 2016. PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation Bioinformatics, https://doi.org/10.1093/bioinformatics/btw222

  • Thorvaldsdóttir, H., Robinson, J.T. and Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV: High-performance genomics data visualization and exploration Briefings in Bioinformatics, https://doi.org/10.1093/bib/bbs017

  • Tribout, T., Croiseau, P., Lefebvre, R., Barbat, A., Boussaha, M., Fritz, S., Boichard, D., Hoze, C. and Sanchez, M.P., 2020. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle Genetics Selection Evolution, https://doi.org/10.1186/s12711-020-00575-1

  • Tsugami, Y., Matsunaga, K., Suzuki, T., Nishimura, T. and Kobayashi, K., 2017. Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/STAT5 signaling Molecular Nutrition and Food Research, https://doi.org/10.1002/mnfr.201700156

  • Vargas-Bello-Pérez, E., Márquez-Hernández, R.I. and Hernández-Castellano, L.E., 2019. Bioactive peptides from milk: Animal determinants and their implications in human health Journal of Dairy Research, https://doi.org/10.1017/S0022029919000384

    Article  Google Scholar 

  • Wang, H., Zheng, Y., Wang, G. and Li, H., 2013. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat Molecular BioSystems, https://doi.org/10.1039/c3mb70084d

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, H.Y., Xiao, S.H., Wang, M., Kim, N.H., Li, H.X. and Wang, G.L., 2015. In silico identification of conserved microRNAs and their targets in bovine fat tissue Gene, https://doi.org/10.1016/j.gene.2015.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb, B. and Sali, A., 2016. Comparative protein structure modeling using MODELLER Current Protocols in Bioinformatics, https://doi.org/10.1002/cpbi.3

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiller, M.A.A., Schmoeller, E., Vieira, L.V., Barbosa, A.A., de Oliveira Feijó, J., Brauner, C.C., Schmitt, E., Corrêa, M.N., Rabassa, V.R. and Del Pino, F.A.B., 2021. Zootechnical and health performance of Holstein x Gir crossbred calves Tropical Animal Health and Production, https://doi.org/10.1007/s11250-021-02601-w

  • Weldenegodguad, M., Popov, R., Pokharel, K., Ammosov, I., Ming, Y., Ivanova, Z. and Kantanen, J., 2019. Whole-genome sequencing of three native cattle breeds originating from the northernmost cattle farming regions Frontiers in Genetics, https://doi.org/10.3389/fgene.2018.00728

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiederstein, M. and Sippl, M.J., 2007. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins Nucleic Acids Research, https://doi.org/10.1093/nar/gkm290

  • Yeo, G. and Burge, C.B., 2004. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals In:, Journal of Computational Biology, https://doi.org/10.1089/1066527041410418

  • Zheng, J., Ather, J.L., Sonstegard, T.S. and Kerr, D.E., 2005. Characterization of the infection-responsive bovine lactoferrin promoter Gene, https://doi.org/10.1016/j.gene.2005.04.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Centro Brasileiro de Melhoramento Genético do Guzerá (CBMG2), particularly Prof. Vânia Maldini Penna, Mrs. Ariane Menicucci, and Mr. Paulo Menicucci, for their enthusiasm with this project. We also thank the Associação Brasileira de Criadores do Gir (ABCG) and the Associação Brasileira de Criadores de Zebu (ABCZ) for technical support. We thank Mr. Peter Laspina for revising the English and for many valuable comments. We wish to thank the PDTIS-FIOCRUZ technology Platform RPT04B and Bioinformatics, BH.

Funding

CGRM was awarded a fellowship from the Coordenação de Pessoal de Nível Superior (CAPES); MRSC was awarded a fellowship from the Brazilian National Research Council (Conselho Nacional de Pesquisa, CNPq, grant numbers 312068/2015–8 and 312405/2018–9) and is supported by grants from the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) APQ-01093–15, APQ-02003–15, and APQ-01377–17; by the Instituto Nacional de Ciência e Tecnologia de Ciência Animal; and by the Pró-Reitoria de Pesquisa de Universidade Federal de Minas Gerais (PRPq/UFMG). MAM, MFM, and RSV received financial support from CNPq. ICR received a fellowship from FAPEMIG and, subsequently, from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). FSO and LRL received fellowships from a project funded by VALE. In addition, the present study was funded by the following agencies and projects: Empresa Brasileira de Pesquisa Agropecuária (Embrapa), CAPES, CNPq, FAPEMIG CBB-1181/0 and TCT 12.093/10 (MVBS), and 17003/2011 (MFM). GO was funded by RCUK (BB/P027849/1) Capacity building for bioinformatics in Latin America (CABANA) and CNPq (307479/2016–1).

Author information

Authors and Affiliations

Authors

Contributions

MRSC, GO, MVGBS, MAM, MGCDP, RSV, MFM: Conceptualization, Methodology, Data curation, Investigation, Resources, Project administration, Funding acquisition, Writing—review and editing. CGRM, ICR, PASF, FSO, FGS, FMGA, ACMS, BCL, WAA, DEVP: Methodology, Data curation, Investigation, Software, Visualization, Validation. CGRM: Writing—original draft. PASF: Writing—review and editing. All authors read and approved of the final manuscript.

Corresponding author

Correspondence to Pablo Augusto Souza Fonseca.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matosinho, C.G.R., Rosse, I.C., Fonseca, P.A.S. et al. Identification and in silico characterization of structural and functional impacts of genetic variants in milk protein genes in the Zebu breeds Guzerat and Gyr. Trop Anim Health Prod 53, 524 (2021). https://doi.org/10.1007/s11250-021-02970-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02970-2

Keywords

Navigation