Skip to main content
Log in

On the Use of Alternative Measurement Methods in the Estimation of Wear Rates in Rotary-Pin-on-Disk Tribometry

  • Methodology
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Do two different and independent methods of estimating the wear rate of a test sample yield the same numerical result? Numerical values of specific wear rates estimated on the basis of alternative methods using a set of dry sliding rotary-pin-on-disk experiments are presented. Wear rates of brass and aluminium alloy pins were estimated using gravimetric and wear scar area methods. Gravimetric and linear displacement methods were used to assess wear rates of ABS plastic and machinable wax pins. Scepticism about the estimated nominal values of wear rates is reduced when alternative assessment methods result in comparable numerical values, or values having the same order of magnitude. This is particularly useful when ranking competing materials for wear rates, when the differences in these rates are small. Uncertainties in individual test sample wear rates, and dispersion in the nominal values of wear rates are also computed to support the aforementioned observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data has been compiled, presented graphically, and tabulated in this manuscript.

Notes

  1. Commercial products are identified for completeness. This does not constitute endorsement.

  2. The large number of significant figures are carried in intermediate calculations to avoid being affected by round off errors [57]

References

  1. Blau, P. J.: Needs and challenges in precision wear measurement. In ASTM Symposium on Precision Wear Measurements and Monitoring. Orlando, FL. Version: Jan 10, (1996)

  2. Fink, M.: Wear oxidation a new component of wear. Trans. Am. Soc. Steel Treat. 18, 1026–1034 (1930)

    Google Scholar 

  3. Rosenberg, S.J., Jordan, L.: Influence of oxide films on the wear of steels. J. Res. Natl. Bureau Stand. 13, 269–280 (1934)

    Article  Google Scholar 

  4. Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. London A 236, 397–410 (1956). https://doi.org/10.1098/rspa.1956.0144

    Article  Google Scholar 

  5. McKee, S.A.: An indentation method of measuring wear. J. Res. Natl. Bureau Stand. 39, 155–161 (1947)

    Article  CAS  Google Scholar 

  6. Burwell, J.T., Strang, C.D.: On the empirical law of adhesive wear. J. Appl. Phys. 23(1), 18–28 (1952). https://doi.org/10.1063/1.1701970

    Article  Google Scholar 

  7. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  8. Sherge, M., Pöhlmann, K., Gervé, A.: Wear measurement using radionuclide-technique (rnt). Wear 254, 801–817 (2003). https://doi.org/10.1016/S0043-1648(03)00230-8

    Article  CAS  Google Scholar 

  9. Novak, R., Polcar, T.: Tribological analysis of thin films by pin-on-disk: evaluation of friction and wear measurement uncertainty. Tribol. Int. 74, 154–163 (2014). https://doi.org/10.1016/j.triboint.2014.02.011

    Article  CAS  Google Scholar 

  10. Iwai, Y., Honda, T., Miyajima, T., Yoshinaga, S., Higashi, M., Fuwa, Y.: Quantitative estimation of wear amounts by real time measurement of wear debris in lubricating oil. Tribol. Int. 43, 388–394 (2010). https://doi.org/10.1016/j.triboint.2009.06.019

    Article  CAS  Google Scholar 

  11. Blau, P.J.: Mechanisms for transitional friction and wear behaviour of sliding metals. Wear 72, 55–66 (1981). https://doi.org/10.1016/0043-1648(81)90283-0

    Article  CAS  Google Scholar 

  12. Czichos, H., Becker, S., Lexow, J.: Multilaboratory tribotesting: results from the Versailles advanced materials and standards programme on wear test methods. Wear 114(1), 109–130 (1987). https://doi.org/10.1016/0043-1648(87)90020-2

    Article  Google Scholar 

  13. Almond, E.A., Gee, M.G.: Results from a U.K. interlaboratory project on dry sliding wear. Wear 120, 101–116 (1987). https://doi.org/10.1016/0043-1648(87)90136-2

    Article  CAS  Google Scholar 

  14. Gee, M.G., Almond, E.A.: Effects of test variables in wear testing of ceramics. Mater. Sci. Technol. 4(10), 877–884 (1988). https://doi.org/10.1179/mst.1988.4.10.877

    Article  CAS  Google Scholar 

  15. Czichos, H., Becker, S., Lexow, J.: International multilaboratory sliding wear tests with ceramics and steel. Wear 135, 171–191 (1989). https://doi.org/10.1016/0043-1648(89)90104-X

    Article  CAS  Google Scholar 

  16. Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009). https://doi.org/10.1007/s11249-009-9477-8

    Article  Google Scholar 

  17. Burris, D.L., Sawyer, W.G.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48, 147–143 (2005). https://doi.org/10.1080/05698190590923842

    Article  CAS  Google Scholar 

  18. Schmitz, T.L., Action, J.E., Burris, D.L., Ziegert, J.C., Sawyer, W.G.: Wear-rate uncertainty analysis. ASME J. Tribol. 126, 802–808 (2004). https://doi.org/10.1115/1.1792675

    Article  Google Scholar 

  19. Blau, P.J.: Lessons learned from the test-to-test variability of different types of wear data. Wear 376–377, 1830–1840 (2017). https://doi.org/10.1016/j.wear.2016.11.012

    Article  CAS  Google Scholar 

  20. Welsh, N.C.: Frictional heating and its influence on the wear of steel. J. Appl. Phys. 28(9), 960–968 (1957). https://doi.org/10.1063/1.1722920

    Article  CAS  Google Scholar 

  21. Antler, M.: Processes of metal transfer and wear. Wear 7, 181–203 (1964). https://doi.org/10.1016/S0043-1648(03)00230-8

    Article  CAS  Google Scholar 

  22. Welsh, N.C.: The dry wear of steels i. the general pattern of behaviour. Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 257(1077), 31–70 (1965). https://doi.org/10.1098/rsta.1965.0001

    Article  Google Scholar 

  23. Suh, N.P., Jahanmir, S., II., Abrahamson, E.P., Turner, A.P.L.: Further investigation of the delamination theory of wear. ASME J. Lubr. Technol. 94(4), 631–637 (1974). https://doi.org/10.1115/1.3452511

    Article  Google Scholar 

  24. Rabinowicz, E.: The wear coefficient - magnitude, scatter, uses. J. Lubr. Technol., Trans. ASME 103(2), 188–193 (1981). https://doi.org/10.1115/1.3251624

    Article  CAS  Google Scholar 

  25. Rice, S.L., Wayne, S.F., Nowotny, H.: Specimen material reversal in pin-on-disc tribotesting. Wear 88, 85–92 (1983). https://doi.org/10.1016/0043-1648(83)90314-9

    Article  CAS  Google Scholar 

  26. Whitenton, E.P., Blau, P.J.: A comparison of methods for determining wear volumes and surface parameters of spherically tipped sliders. Wear 124, 291–309 (1988). https://doi.org/10.1016/0043-1648(88)90219-0

    Article  Google Scholar 

  27. Budinski, K.G.: Tribological properties of titanium alloys. Wear 151(2), 203–217 (1991). https://doi.org/10.1016/0043-1648(91)90249-T

    Article  CAS  Google Scholar 

  28. Venkatesan, S., Rigney, D.A.: Sliding friction and wear of plain carbon steels in air and vacuum. Wear 153, 163–178 (1992). https://doi.org/10.1016/0043-1648(92)90268-D

    Article  CAS  Google Scholar 

  29. Guicciardi, S., Melandri, F., de Luccini, G.: On data dispersion in pin-on-disk wear tests. Wear 252, 1001–1006 (2002). https://doi.org/10.1016/S0043-1648(02)00066-2

    Article  CAS  Google Scholar 

  30. Jones, G.A.: On the tribological behaviour of mechanical seal face materials in dry line contact part I. Mech. Carbon. Wear 256, 415–432 (2004). https://doi.org/10.1016/s0043-1648(03)00539-8

    Article  CAS  Google Scholar 

  31. Qu, J., Truhan, J.J.: An efficient method for accurately determining wear volumes of sliders with non-flat wear scars and compound curvatures. Wear 261, 848–855 (2006). https://doi.org/10.1016/j.wear.2006.01.009

    Article  CAS  Google Scholar 

  32. Aksulu, M., Palabiyik, M.: Uncertainty of wear rate and coefficient of friction for a polymer wear experiment in a pad-on disc tribotester. In Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis, July 7–9, (2008)

  33. Beheshti, A., Khonsari, M.M.: A thermodynamic approach for prediction of wear coefficient under unlubricated sliding condition. Tribol. Lett. 38, 347–354 (2010). https://doi.org/10.1007/s11249-010-9614-4

    Article  CAS  Google Scholar 

  34. Amiri, M., Khonsari, M.M., Brahmeshwarkar, S.: On the relationship between wear and thermal response in sliding systems. Tribol. Lett. 38, 148–154 (2010). https://doi.org/10.1007/s11249-010-9584-6

    Article  CAS  Google Scholar 

  35. Argibay, N., Swayer, W.G.: Low wear metal sliding electrical contacts at high current density. Wear 274–275, 229–237 (2012). https://doi.org/10.1016/j.wear.2011.09.003

    Article  CAS  Google Scholar 

  36. Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.-Z., Blanchet, T.A., Koratkar, N.: Suppression of wear in graphene polymer composites. Carbon 50(9), 3178–3183 (2012). https://doi.org/10.1016/j.carbon.2011.10.038

    Article  CAS  Google Scholar 

  37. Zammit, A., Abela, S., Wagner, L., Mhaede, M., Grech, M.: Tribological behaviour of shot peened Cu–Ni austempered ductile iron. Wear 302, 829–836 (2013). https://doi.org/10.1016/j.wear.2012.12.027

    Article  CAS  Google Scholar 

  38. Bortoleto, E.M., Rovani, A.C., Seriacopi, V., Profito, F.J., Zachariadis, D.C., Machado, I.F.: Experimental and numerical analysis of dry contact in the pin on disc test. Wear 301, 19–26 (2013). https://doi.org/10.1016/j.wear.2012.12.005

    Article  CAS  Google Scholar 

  39. Neis, P.D., Ferreira, N.F., da Silva, F.P.: Comparison between methods for measuring wear in brake friction materials. Wear 319, 191–199 (2014). https://doi.org/10.1016/j.wear.2014.08.004

    Article  CAS  Google Scholar 

  40. Gebretsadik, D.W., Hardell, J., Prakash, B.: Friction and wear characteristics of different Pb-free bearing materials in mixed and boundary lubrication. Wear 340–341, 63–72 (2015). https://doi.org/10.1016/j.wear.2015.06.002

    Article  CAS  Google Scholar 

  41. Liu, C., Man, Z., Zhou, F., Chen, K., Yu, H.: The wear an friction characters of polycrystalline diamond under wetting conditions. ASME J. Tribol. 141(2), 021607 (2019). https://doi.org/10.1115/1.4041397

    Article  CAS  Google Scholar 

  42. Leonardi, M., Alemani, M., Straffelini, G., Gialanella, S.: A pin-on-disc study on the dry sliding behaviour of a cu-free friction material containing different types of natural graphite. Wear 442–443, 203157 (2020). https://doi.org/10.1016/j.wear.2019.203157

    Article  CAS  Google Scholar 

  43. Maculotti, G., Goti, E., Genta, G., Mazza, L., Galetto, M.: Uncertainty-based comparison of coventional and surface-topography based methods of wear volume evaluation in pin-on-disc tribological tests. Tribol. Int. 165, 107260 (2022). https://doi.org/10.1016/j.triboint.2021.107260

    Article  CAS  Google Scholar 

  44. Holm, R.: Electrical Contacts. H. Gerbers, Stockholm (1946)

    Google Scholar 

  45. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, 4th edn. Butterworth-Heinemann, Waltham (2014)

    Google Scholar 

  46. Bahadur, S.: Wear research and development. ASME J. Lubr. Technol. 100, 449–454 (1978). https://doi.org/10.1115/1.3453249

    Article  Google Scholar 

  47. Blau, P.J.: Fifty years of research on the wear of metals. Tribol. Int. 30(5), 321–331 (1997). https://doi.org/10.1016/S0301-679X(96)00062-X

    Article  CAS  Google Scholar 

  48. Wallbridge, N.C., Dowson, D.: Distribution of wear rate data and a statistical approach to sliding wear theory. Wear 119, 295–312 (1987). https://doi.org/10.1016/0043-1648(87)90037-8

    Article  Google Scholar 

  49. Lancaster, J.K.: The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 10, 103–117 (1967). https://doi.org/10.1016/0043-1648(67)90082-8

    Article  Google Scholar 

  50. Rabinowicz, E.: The least wear. Wear 100, 533–541 (1984). https://doi.org/10.1016/0043-1648(84)90031-0

    Article  Google Scholar 

  51. Akbarzadeh, S., Khonsari, M.M.: On the applicability of Miner’s rule to adhesive wear. Tribol. Lett. 63, 29 (2016). https://doi.org/10.1007/s11249-016-0717-4

    Article  Google Scholar 

  52. Lijesh, K.P., Khonsari, M.M.: On the applicability of Miner’s rule to adhesive wear. Tribol. Lett. 66, 105 (2018). https://doi.org/10.1007/s11249-018-1058-2

    Article  Google Scholar 

  53. Fereidouni, H., Akbarzadeh, S., Khonsari, M.M.: On the assessment of variable loading in adhesive wear. Tribol. Int. 129, 167–176 (2019). https://doi.org/10.1016/j.triboint.2018.07.035

    Article  Google Scholar 

  54. Avery, H.S.: The measurement of wear resistance. Wear 4(6), 427–449 (1961). https://doi.org/10.1016/0043-1648(61)90301-5

    Article  Google Scholar 

  55. ISO: Guide to the Expression of Uncertainty in Measurement, 2nd edn. International Organization for Standardization, Geneva (1995)

    Google Scholar 

  56. Taylor, Barry N., Kuyatt, Chris E.: NIST Technical Note 1297, 1994 edition: Guidelines for evaluating and expressing the uncertainty of NIST measurement results. United States Department of Commerce Technology Administration, National Institute of Standards and Technology, Gaithersburg, MD (1994)

  57. Dieck, R.H.: Measurement uncertainty models. ISA Trans. 36(1), 29–35 (1997). https://doi.org/10.1016/S0019-0578(97)00004-9

    Article  Google Scholar 

  58. Queener, C.A., Smith, T.C., Mitchell, W.L.: Transient wear of machine parts. Wear 8, 391–400 (1965). https://doi.org/10.1016/0043-1648(65)90170-5

    Article  Google Scholar 

  59. Blau, P.J.: On the nature of Running-in. Tribol. Int. 38(11–12), 1007–1012 (2005). https://doi.org/10.1016/j.triboint.2005.07.020

    Article  Google Scholar 

  60. Blau, P.J.: Running-in: art or engineering? J. Mater. Eng. 13(1), 47–53 (1991). https://doi.org/10.1007/BF02834123

    Article  Google Scholar 

  61. Blau, P.J.: How common is the steady-state? The implications of wear transitions for materials selection and design. Wear 332–333, 1120–1128 (2015). https://doi.org/10.1016/j.wear.2014.11.018

    Article  CAS  Google Scholar 

  62. Mortazavi, V., Khonsari, M.M.: On the prediction of transient wear. ASME J. Tribol. 138(4), 041604 (2016). https://doi.org/10.1115/1.4032843

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KCS: Experiments, data analysis, and manuscript writing. NVV: Experimental plan, material resources, manpower resources, and overall project supervision. PRC: Experimental plan, experimental resources, editing, and supervision of experiments. JKS: Conceptualization, supervision of uncertainty analysis, and manuscript writing. AB: Data analysis, comparative summary of the literature, and final manuscript writing.

Corresponding author

Correspondence to Abhijit Bhattacharyya.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solasa, K.C., Venkataraman, N.V., Choudhury, P.R. et al. On the Use of Alternative Measurement Methods in the Estimation of Wear Rates in Rotary-Pin-on-Disk Tribometry. Tribol Lett 72, 45 (2024). https://doi.org/10.1007/s11249-024-01841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-024-01841-9

Keywords

Navigation