Skip to main content
Log in

Wear Resistance and Microstructure of Ultra High Molecular Weight Polyethylene During Uniaxial Tension

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The influence of microstructure on wear resistance of prosthetic hip and joint bioimplant material, ultra high molecular weight polyethylene (UHMWPE) during uniaxial tension has been investigated. The microstructure and wear resistance have been studied utilizing wide-angle X-ray diffraction and nanoscratch tester, respectively. The microstructure has been represented in terms of texture components resultant from orientation distribution functions (ODFs) and pole figures while wear resistance has been represented in terms of wear volume and wear resistance factor. This study investigates how the global combination of texture components prevalent in different plastic regimes engenders material responses to wear resistance. The effect of abrasion and change in wear resistance of the bioimplant material UHMWPE have been explored by varying the loads applied, scratch directions, scratch speeds and the number of recurring scratches within the nanoscratch tests. The wear resistance developed during the uniaxial tension has been correlated to the microstructural changes resulting due to mechanical deformation. This study of the correlation between wear resistance and texture suggests that improved wear resistance in UHMWPE can be achieved by texturing the bioimplant material in the loading direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data used in this manuscript will be made available by the authors upon request.

References

  1. Affatato, S., et al.: Isolation and morphological characterisation of UHMWPE wear debris generated in vitro. Biomaterials 22(17), 2325–2331 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Bell, C.J., et al.: Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components. J. Arthroplasty 13(3), 280–290 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Fisher, J., et al.: 2009 knee society presidential guest lecture: polyethylene wear in total knees. Clin. Orthop. Relat. Res. 468(1), 12 (2010)

    Article  PubMed  Google Scholar 

  4. Kurtz, S.M.: The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement. Elsevier, Amsterdam (2004)

    Google Scholar 

  5. Puppulin, L., et al.: A comparative microstructural study of vitamin-E blended and infused highly crosslinked UHMWPE for total knee arthroplasty. J. Mech. Behav. Biomed. Mater. 39, 247–256 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Kurtz, S.M., et al.: Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20(18), 1659–1688 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Huang, Y.-F., et al.: Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 35(25), 6687–6697 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Katti, K.S.: Biomaterials in total joint replacement. Colloids Surf. B 39(3), 133–142 (2004)

    Article  CAS  Google Scholar 

  9. Ronca, S.: Chapter 10 – Polyethylene. In: Gilbert, M. (ed.) Brydson’s Plastics Materials, 8th edn., pp. 247–278. Butterworth-Heinemann, Oxford (2017)

    Chapter  Google Scholar 

  10. McKellop, H., et al.: Wear characteristics of UHMW polyethylene: a method for accurately measuring extremely low wear rates. J. Biomed. Mater. Res. 12(6), 895–927 (1978)

    Article  CAS  PubMed  Google Scholar 

  11. El-Domiaty, A., El-Fadaly, M., Nassef, A.E.: Wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE). J. Mater. Eng. Perform. 11(5), 577–583 (2002)

    Article  CAS  Google Scholar 

  12. Hall, R., Unsworth, A.: Friction in hip prostheses. Biomaterials 18(15), 1017–1026 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Cooper, R.A., et al.: Polyethylene debris-induced osteolysis and loosening in uncemented total hip arthroplasty: a cause of late failure. J. Arthroplasty 7(3), 285–290 (1992)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  14. Amstutz, H.C., et al.: Mechanism and clinical significance of wear debris-induced osteolysis. Clin. Orthop. Relat. Res. 276, 7–18 (1992)

    Article  Google Scholar 

  15. Manley, M.T., Serekian, P.: Wear debris. An environmental issue in total joint replacement. Clin. Orthop. Relat. Res. 298, 137–146 (1994)

    Article  Google Scholar 

  16. Agarwal, S.: Osteolysis—basic science, incidence and diagnosis. Curr. Orthop. 18(3), 220–231 (2004)

    Article  Google Scholar 

  17. Sargeant, A., Goswami, T.: Hip implants: paper V. Physiological effects. Mater. Des. 27(4), 287–307 (2006)

    Article  CAS  Google Scholar 

  18. Wooley, P.H., et al.: Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23(2), 517–526 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Green, T., et al.: Polyethylene particles of a ‘critical size’are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19(24), 2297–2302 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Allen, M., et al.: The effects of particulate polyethylene at a weight-bearing bone-implant interface: a study in rats. J. Bone Joint Surg. Br. 78(1), 32–37 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. Bronzino, J.D.: Biomedical Engineering Handbook. Vol. 2. CRC Press, Boca Raton (1999)

    Google Scholar 

  22. Li, D., et al.: Wear Resistance and Texture Evolution of Ultra High Molecular Weight Polyethylenes during Uniaxial Compression. In: Rollett, A.D. (ed.) Applications of Texture Analysis, pp. 595–603. Wiley, Hoboken (2008)

    Chapter  Google Scholar 

  23. Farrar, D.F., Brain, A.A.: The microstructure of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 18(24), 1677–1685 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Buford, A., Goswami, T.: Review of wear mechanisms in hip implants: Paper I-General. Mater. Des. 25(5), 385–393 (2004)

    Article  CAS  Google Scholar 

  25. Shi, W., Li, X.Y., Dong, H.: Improved wear resistance of ultra-high molecular weight polyethylene by plasma immersion ion implantation. Wear 250(1), 544–552 (2001)

    Article  Google Scholar 

  26. Li, S., et al.: Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear 257(9–10), 869–876 (2004)

    Article  CAS  Google Scholar 

  27. Gispert, M., et al.: Friction and wear mechanisms in hip prosthesis: comparison of joint materials behaviour in several lubricants. Wear 260(1–2), 149–158 (2006)

    Article  CAS  Google Scholar 

  28. Valenza, A., et al.: Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation. Polymer 45(5), 1707–1715 (2004)

    Article  CAS  Google Scholar 

  29. Balani, K., et al.: The nano-scratch behavior of biocompatible hydroxyapatite reinforced with aluminum oxide and carbon nanotubes. Jom 61, 63–66 (2009)

    Article  CAS  Google Scholar 

  30. Jardret, V., et al.: Understanding and quantification of elastic and plastic deformation during a scratch test. Wear 218(1), 8–14 (1998)

    Article  CAS  Google Scholar 

  31. Krauß, S., et al.: Structural reorientation and compaction of porous MoS2 coatings during wear testing. Wear 500, 204339 (2022)

    Article  Google Scholar 

  32. Banday, S., Wani, M.: Nanomechanical and nanotribological properties of self-lubricating Ti/MoS2 nanocoating at nanoscale level. Int. J. Surf. Sci. Eng. 14(2), 89–104 (2020)

    Article  CAS  Google Scholar 

  33. Li, D., et al.: Crystallographic texture evolution in high-density polyethylene during uniaxial tension. Polymer 42(11), 4903–4913 (2001)

    Article  CAS  Google Scholar 

  34. Li, D., et al.: The role of crystallinity in the crystallographic texture evolution of polyethylenes during tensile deformation. Polymer 44(18), 5355–5367 (2003)

    Article  CAS  Google Scholar 

  35. Bartczak, Z., Argon, A., Cohen, R.: Deformation mechanisms and plastic resistance in single-crystal-textured high-density polyethylene. Macromolecules 25(19), 5036–5053 (1992)

    Article  CAS  ADS  Google Scholar 

  36. Addiego, F., et al.: Does texturing of UHMWPE increase strength and toughness a pilot study. Clin. Orthop. Relat. Res. 469(8), 2318–2326 (2011)

    Article  PubMed  Google Scholar 

  37. Dong, G.-N., et al.: Temperature field and wear prediction for UHMWPE acetabular cup with assumed rectangular surface texture. Mater. Des. 28(9), 2402–2416 (2007)

    Article  CAS  Google Scholar 

  38. Ohta, M., Hyon, S.-H., Tsutumi, S.: Control of crystalline orientation to enhance the wear resistance of ultra-high molecular weight polyethylene crystallization cups for artificial joints. Wear 255(7–12), 1045–1050 (2003)

    Article  CAS  Google Scholar 

  39. Fang, H., Hsu, S.M., Sengers, J.: Surface texture design to generate specific sizes and shapes of UHMWPE wear particles. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe 34(10–11), 976–988 (2003)

    Article  CAS  Google Scholar 

  40. Nečas, D., et al.: Running-in friction of hip joint replacements can be significantly reduced: The effect of surface-textured acetabular cup. Friction 8, 1–16 (2020)

    Article  Google Scholar 

  41. Hussain, M., et al.: Influence of laser processing conditions for texturing on ultra-high-molecular-weight-polyethylene (UHMWPE) surface. Case Stud. Therm. Eng. 14, 100491 (2019)

    Article  Google Scholar 

  42. Briscoe, B.: Isolated contact stress deformations of polymers: the basis for interpreting polymer tribology. Tribol. Int. 31(1–3), 121–126 (1998)

    Article  CAS  Google Scholar 

  43. Briscoe, B.J., Pelillo, E., Sinha, S.K.: Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym. Eng. Sci. 36(24), 2996–3005 (1996)

    Article  Google Scholar 

  44. Briscoe, B.J., et al.: Scratching maps for polymers. Wear 200(1–2), 137–147 (1996)

    Article  CAS  Google Scholar 

  45. Movva, S., et al.: Crystallographic texture evolution in ultra high molecular weight polyethylene during uniaxial tension. Polymer 245, 124649 (2022)

    Article  CAS  Google Scholar 

  46. Burrell, R.K.: Mechanical Property Response on Textured Ultra High Molecular Weight Polyethylene (UHMWPE). Florida A & M University, Tallahassee (2005)

    Google Scholar 

Download references

Acknowledgements

This article has been adapted from Dr. Reeshemah K. Burrell’s thesis work, “Mechanical Property Response on Textured Ultra High Molecular Weight Polyethylene (UHMWPE)” [46].

Funding

This research has been partially funded by Florida Agricultural and Mechanical University’s NASA Fellowship Program and Ford GEM Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

SM: Visualization, Writing—original draft, Writing—review & editing. RKB: Investigation, Data curation, Formal analysis. HG: Conceptualization, Funding acquisition, Review, Supervision. KIJ: Supervision.

Corresponding author

Correspondence to Sahitya Movva.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movva, S., Burrell, R.K., Garmestani, H. et al. Wear Resistance and Microstructure of Ultra High Molecular Weight Polyethylene During Uniaxial Tension. Tribol Lett 72, 2 (2024). https://doi.org/10.1007/s11249-023-01797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01797-2

Keywords

Navigation