Skip to main content
Log in

Transition from Plastic Shearing to Fracture of Asperity Junctions: Role of a Critical Aspect Ratio

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Material loss can result through sliding contact between solids, primarily due to wear process. Failure of interlocking asperities in contact, which can occur as a fracture-induced or plastic shearing mechanism, is a significant contributor in material wear. We developed an analytical model to predict asperity junction failure mechanisms as a function of material properties (fracture toughness and shear strength) and geometrical parameters (asperity height and width). The failure causes fracture-induced and plastic shearing below and above a threshold aspect ratio, respectively. This was validated by a wide range of configurations and materials using both finite element simulations and documented data from literature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  2. Bhushan, B.: Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol. Lett. 4, 1–35 (1998). https://doi.org/10.1023/A:1019186601445

    Article  Google Scholar 

  3. Pham-Ba, S., Brink, T., Molinari, J.-F.: Adhesive wear and interaction of tangentially loaded micro-contacts. Int. J. Solids Struct. 188–189, 261–268 (2020). https://doi.org/10.1016/j.ijsolstr.2019.10.023

    Article  Google Scholar 

  4. Lawn, B.R.: A model for the wear of brittle solids under fixed abrasive conditions. Wear 33(2), 369–372 (1975). https://doi.org/10.1016/0043-1648(75)90290-2

    Article  Google Scholar 

  5. Moore, M., King, F.: Abrasive wear of brittle solids. Wear 60, 123–140 (1980). https://doi.org/10.1016/0043-1648(80)90253-7

    Article  CAS  Google Scholar 

  6. Harish, A.B., Wriggers, P.: Modeling of two-body abrasive wear of filled elastomers as a contact-induced fracture process. Tribol. Int. 138, 16–31 (2019). https://doi.org/10.1016/j.triboint.2019.05.009

    Article  Google Scholar 

  7. Brink, T., Molinari, J.-F.: Adhesive wear mechanisms in the presence of weak interfaces: insights from an amorphous model system. Phys. Rev. Mater. 3, 053604 (2019). https://doi.org/10.1103/PhysRevMaterials.3.053604

    Article  CAS  Google Scholar 

  8. Suh, N.P.: The delamination theory of wear. Wear 25(1), 111–124 (1973). https://doi.org/10.1016/0043-1648(73)90125-7

    Article  CAS  Google Scholar 

  9. Rozeanu, L.: Fatigue wear as a rate process. Wear 6(5), 337–340 (1963). https://doi.org/10.1016/0043-1648(63)90201-1

    Article  Google Scholar 

  10. Tewari, A., Basu, B., Bordia, R.K.: Model for fretting wear of brittle ceramics. Acta Mater. 57(7), 2080–2087 (2009). https://doi.org/10.1016/j.actamat.2009.01.013

    Article  CAS  Google Scholar 

  11. Watson, S.W., Friedersdorf, F.J., Madsen, B.W., Cramer, S.D.: Methods of measuring wear-corrosion synergism. Wear 181–183(2), 476–484 (1995). https://doi.org/10.1016/0043-1648(95)90161-2

    Article  Google Scholar 

  12. Brach, S., Collet, S.: Criterion for critical junctions in elastic-plastic adhesive wear. Phys. Rev. Lett. 127, 185501 (2021). https://doi.org/10.1103/PhysRevLett.127.185501

    Article  CAS  Google Scholar 

  13. Bowden, F., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford (2001)

    Google Scholar 

  14. Maw, W., Stevens, F., Langford, S., Dickinson, J.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92, 5103 (2002). https://doi.org/10.1063/1.1510595

    Article  CAS  Google Scholar 

  15. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 125501, 101 (2008). https://doi.org/10.1103/PhysRevLett.101.125501

    Article  CAS  Google Scholar 

  16. Merkle, A.P., Marks, L.D.: Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864 (2008). https://doi.org/10.1016/j.wear.2008.04.032

    Article  CAS  Google Scholar 

  17. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181 (2010). https://doi.org/10.1038/nnano.2010.3

    Article  CAS  Google Scholar 

  18. Mulvihill, D., Kartal, M., Nowell, D., Hills, D.: An elastic-plastic asperity interaction model for sliding friction. Tribol. Int. 44(12), 1679–1694 (2011). https://doi.org/10.1016/j.triboint.2011.06.018

    Article  CAS  Google Scholar 

  19. Sato, T., Ishida, T., Jalabert, L., Fujita, H.: Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 23(50), 505701 (2012). https://doi.org/10.1088/0957-4484/23/50/505701

    Article  CAS  Google Scholar 

  20. Romero, P.A., Jarvi, T.T., Beckmann, N., Mrovec, M., Moseler, M.: Coarse graining and localized plasticity between sliding nanocrystalline metals. Phys. Rev. Lett. 113(36), 101 (2014). https://doi.org/10.1103/PhysRevLett.113.036101

    Article  CAS  Google Scholar 

  21. Aghababaei, R., Brink, T., Molinari, J.-F.: Asperity-level origins of transition from mild to severe wear. Phys. Rev. Lett. 120, 186105 (2018). https://doi.org/10.1103/PhysRevLett.120.186105

    Article  CAS  Google Scholar 

  22. Mishra, T., de Rooij, M., Shisode, M., Hazrati, J., Schipper, D.J.: An analytical model to study the effect of asperity geometry on forces in ploughing by an elliptical asperity. Tribol. Int. 137, 405–419 (2019). https://doi.org/10.1016/j.triboint.2019.05.015

    Article  Google Scholar 

  23. Green, A.: Friction between unlubricated metals: a theoretical analysis of the junction model. Proc. R. Soc. 228, 191 (1955). https://doi.org/10.1098/rspa.1955.0043

    Article  Google Scholar 

  24. Brockley, C.A., Fleming, G.K.: A model junction study of severe metallic wear. Wear 8(5), 374–380 (1965). https://doi.org/10.1016/0043-1648(65)90168-7

    Article  Google Scholar 

  25. Byerlee, J.D.: Theory of friction based on brittle fracture. J. Appl. Phys. 38, 2928–2934 (1967). https://doi.org/10.1063/1.1710026

    Article  CAS  Google Scholar 

  26. Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4, 3763 (2010). https://doi.org/10.1021/nn100246g

    Article  CAS  Google Scholar 

  27. Bouchet, M.I.D.B., Matta, C., Vacher, B., Le-Mogne, T., Martin, J.M., Lautz, J.V., Ma, T., Pastewka, L., Otschik, J., Gumbsch, P., Moseler, M.: Energy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coating. Carbon 87, 317–329 (2015). https://doi.org/10.1016/j.carbon.2015.02.041

    Article  CAS  Google Scholar 

  28. Vahdat, V., Grierson, D.S., Turner, K.T., Carpick, R.W.: Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes. ACS Nano 7, 3221–3235 (2013). https://doi.org/10.1021/nn305901n

    Article  CAS  Google Scholar 

  29. Liu, J., Jiang, Y., Grierson, D.S., Sridharan, K., Shao, Y., Jacobs, T.D.B., Falk, M.L., Carpick, R.W., Turner, K.T.: Tribochemical wear of diamond-like carbon-coated atomic force microscope tips. ACS Appl. Mater. Interface 9, 35341–35348 (2017). https://doi.org/10.1021/acsami.7b08026

    Article  CAS  Google Scholar 

  30. Bernal, R.A., Carpick, R.W.: Visualization of nanoscale wear mechanisms in ultrananocrystalline diamond by in-situ TEM tribometry. Carbon 154, 132–139 (2019). https://doi.org/10.1016/j.carbon.2019.07.082

    Article  CAS  Google Scholar 

  31. Aghababaei, R., Warner, D.H., Molinari, J.-F.: Critical length scale controls adhesive wear mechanisms. Nat. Commun. 7, 11816 (2016). https://doi.org/10.1038/ncomms11816

    Article  CAS  Google Scholar 

  32. Aghababaei, R.: On the origins of third-body particle formation during adhesive wear. Wear 426–427(Part B), 1076–1081 (2019). https://doi.org/10.1016/j.wear.2018.12.060

    Article  CAS  Google Scholar 

  33. Aghababaei, R.: Effect of adhesion on material removal during adhesive wear. Phys. Rev. Mater. 3(6), 2476–2485 (2019). https://doi.org/10.1103/PhysRevMaterials.3.063604

    Article  Google Scholar 

  34. Collet, S., Molinari, J.-F., Brach, S.: Variational phase-field continuum model uncovers adhesive wear mechanisms in asperity junctions. J. Mech. Phys. Solids 145, 104130 (2020). https://doi.org/10.1016/j.jmps.2020.104130

    Article  Google Scholar 

  35. Xu, H., Komvopoulos, K.: A fracture mechanics analysis of asperity cracking due to sliding contact. Int. J. Solids Struct. 171, 1–9 (2019). https://doi.org/10.1016/j.ijsolstr.2019.05.005

    Article  Google Scholar 

  36. Carollo, V., Paggi, M., Reinoso, J.: The steady-state archard adhesive wear problem revisited based on the phase field approach to fracture. Int. J. Fract. 215, 39–48 (2019). https://doi.org/10.1007/s10704-018-0329-0

    Article  Google Scholar 

  37. Aghababaei, R., Budzik, M.: Fracture modes of brittle junctions under shear. Ext. Mech. Lett. 35, 100644 (2020). https://doi.org/10.1016/j.eml.2020.100644

    Article  Google Scholar 

  38. Suo, Z., Hutchinson, J.: Interface crack between two elastic layers. Int. J. Fract. 43, 1–18 (1990). https://doi.org/10.1007/BF00018123

    Article  Google Scholar 

  39. Jensen, H., Thouless, M.: Effects of residual stresses in the blister test. Int. J. Solids Struct. 30(6), 779–795 (1993). https://doi.org/10.1016/0020-7683(93)90040-E

    Article  Google Scholar 

  40. Malekan, M., Budzik, M.K., Jensen, H.M., Aghababaei, R.: Fracture analyses of surface asperities during sliding contact. Tribol. Int. 159, 106939 (2021). https://doi.org/10.1016/j.triboint.2021.106939

    Article  Google Scholar 

  41. Williams, M.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, 526–528 (1952). https://doi.org/10.1115/1.4010553

    Article  Google Scholar 

  42. Seweryn, A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47, 673–681 (1994). https://doi.org/10.1016/0013-7944(94)90158-9

    Article  Google Scholar 

  43. Carpinteri, A.: Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Eng. Fract. Mech. 26, 143–155 (1987). https://doi.org/10.1016/0013-7944(87)90086-5

    Article  Google Scholar 

  44. Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A., Taylor, D.: A finite fracture mechanics approach to structures with sharp V-notches. Eng. Fract. Mech. 75, 1736–1752 (2008). https://doi.org/10.1016/j.engfracmech.2007.04.010

    Article  Google Scholar 

  45. Carpinteri, A., Paggi, M., Pugno, N.: Numerical evaluation of generalized stress-intensity factors in multi-layered composites. Int. J. Solids Struct. 43, 627–641 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.009

    Article  Google Scholar 

  46. Hibbeler, R.C.: Mechanics of Materials, 10th edn. Pearson Education Inc, Boston (2017)

    Google Scholar 

  47. Malekan, M.: Fracture loads of sharp and blunt asperities under normal and tangential loading. Tribol. Int. 177, 107949 (2023). https://doi.org/10.1016/j.triboint.2022.107949

    Article  Google Scholar 

  48. Johnson, G.R., Cook, J.R.: Constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of 7th Symposium on Ballistics, Netherlands (1983)

  49. Krasauskas, P., Kilikevicius, S., Česnavicius, R., Pacenga, D.: Experimental analysis and numerical simulation of the stainless AISI 304 steel friction drilling process. Mechanika 20(6), 590–595 (2014). https://doi.org/10.5755/j01.mech.20.6.8664

    Article  Google Scholar 

  50. Tounsi, N., Vincenti, J., Otho, A., Elbestawi, M.A.: From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. Int. J. Mach. Tools Manuf. 42, 12 (2002). https://doi.org/10.1016/S0890-6955(02)00046-9

    Article  Google Scholar 

  51. Gupta, N.K., Iqbal, M.A., Sekhon, G.S.: Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles. Int. J. Impact Eng. 32(12), 1921–1944 (2006). https://doi.org/10.1016/j.ijimpeng.2005.06.007

    Article  Google Scholar 

  52. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985). https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  53. Khurshudov, A., Kato, K.: Wear of the atomic force microscope tip under light load, studied by atomic force microscopy. Ultramicroscopy 60, 11–16 (1995). https://doi.org/10.1016/0304-3991(95)00071-8

    Article  CAS  Google Scholar 

  54. Chung, K.-H., Kim, D.-E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003). https://doi.org/10.1023/A:1024457132574

    Article  CAS  Google Scholar 

  55. Chung, K.-H., Lee, Y.-H., Kim, D.-E.: Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102, 161–171 (2005). https://doi.org/10.1016/j.ultramic.2004.09.009

    Article  CAS  Google Scholar 

  56. Tao, Z., Bhushan, B.: Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol. Lett. 21, 1–16 (2006). https://doi.org/10.1007/s11249-005-9001-8

    Article  CAS  Google Scholar 

  57. Norman, T.L., Nivargikar, S.V., Burr, D.B.: Resistance to crack growth in human cortical bone is greater in shear than in tension. J. Biomech. 29(8), 1023–1031 (1996). https://doi.org/10.1016/0021-9290(96)00009-7

    Article  CAS  Google Scholar 

  58. Tarigopula, V., Hopperstad, O.S., Langseth, M., Clausen, A.H., Hild, F., Lademo, O.-G., Eriksson, M.: A study of large plastic deformations in dual phase steel using digital image correlation and fe analysis. Exp. Mech. 48, 181–196 (2008). https://doi.org/10.1007/s11340-007-9066-4

    Article  Google Scholar 

  59. An, Y.G., Vegter, H., Heijne, J.: Development of simple shear test for the measurement of work hardening. J. Mater. Proc. Technol. 209, 4248–4254 (2009). https://doi.org/10.1016/j.jmatprotec.2008.11.007

    Article  Google Scholar 

  60. Yin, Q., Zillmann, B., Suttner, S., Gerstein, G., Biasutti, M., Tekkaya, A.E., Wagner, M.F.-X., Merklein, M., Schaper, M., Halle, T., Brosius, A.: An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int. J. Solids Struct. 51, 1066–1074 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.006

    Article  Google Scholar 

  61. Yin, Q., Soyarslan, C., Isik, K., Tekkaya, A.E.: A grooved in-plane torsion test for the investigation of shear fracture in sheet materials. Int. J. Solids Struct. 66, 121–132 (2015). https://doi.org/10.1016/j.ijsolstr.2015.03.032

    Article  CAS  Google Scholar 

  62. Jia, L.-J., Ikai, T., Shinohara, K., Ge, H.: Ductile crack initiation and propagation of structural steels under cyclic combined shear and normal stress loading. Construct. Build. Mater. 112, 69–83 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.171

    Article  Google Scholar 

  63. Gorji, M.B., Mohr, D.: Micro-tension and micro-shear experiments to characterize stress-state dependent ductile fracture. Acta Mater. 131, 65–76 (2017). https://doi.org/10.1016/j.actamat.2017.03.034

    Article  CAS  Google Scholar 

  64. Starman, B., Vrhb, M., Koca, P., Halilovic, M.: Shear test-based identification of hardening behaviour of stainless steel sheet after onset of necking. J. Mater. Proc. Technol. 270, 335–344 (2019). https://doi.org/10.1016/j.jmatprotec.2019.03.010

    Article  CAS  Google Scholar 

  65. Liu, Y., Kang, L., Ge, H.: Experimental and numerical study on ductile fracture of structural steels under different stress states. J. Construct. Steel Res. 158, 381–404 (2019). https://doi.org/10.1016/j.jcsr.2019.04.001

    Article  Google Scholar 

  66. Xing, J., Qiu, C., Wang, M., Yang, N.: Uniaxial failure mechanism and design strength of high-strength welded hollow spherical joint. Eng. Struct. 256, 113897 (2020). https://doi.org/10.1016/j.engstruct.2022.113897

    Article  Google Scholar 

  67. Huang, X., Ge, J., Zhao, J., Zhao, W.: A continuous damage model of q690d steel considering the influence of lode parameter and its application. Construct. Build. Mater. 262, 120067 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120067

    Article  CAS  Google Scholar 

  68. Zhu, Y., Kiran, R., Xing, J., Pan, Z., Li, L.: A modified micromechanics framework to predict shear involved ductile fracture in structural steels at intermediate and low-stress triaxialities. Eng. Fract. Mech. 225, 106860 (2020). https://doi.org/10.1016/j.engfracmech.2019.106860

    Article  Google Scholar 

  69. Aghababaei, R., Malekan, M., Budzik, M.: Cutting depth dictates the transition from continuous to segmented chip formation. Phys. Rev. Lett. 127, 235502 (2021). https://doi.org/10.1103/PhysRevLett.127.235502

    Article  CAS  Google Scholar 

  70. Zhu, P., Zhang, Q., Xu, H., Ouyang, Y.: Experimental and numerical investigation on plasticity and fracture behaviors of aluminum alloy 6061–t6 extrusions. Arch. Civ. Mech. Eng. 21, 88 (2021). https://doi.org/10.1007/s43452-021-00225-3

    Article  CAS  Google Scholar 

  71. Qin, S., Novak, T.C., Vailhe, M.K., Liu, Z.-K., Beese, A.M.: Plasticity and fracture behavior of inconel 625 manufactured by laser powder bed fusion: comparison between as-built and stress relieved conditions. Mater. Sci. Eng. A 806, 140808 (2021). https://doi.org/10.1016/j.msea.2021.140808

    Article  CAS  Google Scholar 

  72. Reyne, B., Herault, D., Thuillier, S., Manach, P.-Y.: Quality of the strain state in simple shear testing using field measurement techniques. Int. J. Mech. Sci. 208, 106660 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106660

    Article  Google Scholar 

  73. Tancogne-Dejean, T., Roth, C.C., Morgeneyer, T.F., Helfen, L., Mohr, D.: Ductile damage of AA2024-T3 under shear loading: mechanism analysis through in-situ laminography. Acta Mater. 205, 116556 (2021). https://doi.org/10.1016/j.actamat.2020.116556

    Article  CAS  Google Scholar 

  74. Bucci, R.H.: ASM Handbook, Volume 19: Fatigue and Fracture (1996)

  75. Svoboda, A., Wedberg, D., Lindgren, L.-E.: Simulation of metal cutting using a physically based plasticity model. Model. Simul. Mater. Sci. Eng. 18, 075005 (2010). https://doi.org/10.1088/0965-0393/18/7/075005

    Article  CAS  Google Scholar 

  76. Delrio, F.W., Boer, M.P.D., Knapp, J.A., Clews, P.J., Dunn, M.L.: The role of van der waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005). https://doi.org/10.1038/nmat1431

    Article  CAS  Google Scholar 

  77. Lubrecht, A.A., Dwyer-Joyce, R.S., Ioannides, E.: Analysis of the influence of indentations on contact life. In: Dowson, D., Taylor, C.M., Godet, M. (eds.) Proceedings of the 18th Leeds-Lyon Symposium on Tribology (Wear Particles - from the Cradle to the Grave). Elsevier, Amsterdam (1990)

Download references

Acknowledgements

We thank anonymous reviewers for insightful comments and suggestions on earlier drafts of this work, which helped to improve the quality of the manuscript.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Malekan.

Ethics declarations

Competing Interests

The author has no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate:

The article follows the guidelines of the Committee on Publication Ethics (COPE) and involves no studies on human or animal subjects.

Consent for publication

Not applicable. The article involves no studies on humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 824 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekan, M. Transition from Plastic Shearing to Fracture of Asperity Junctions: Role of a Critical Aspect Ratio. Tribol Lett 71, 26 (2023). https://doi.org/10.1007/s11249-023-01699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01699-3

Keywords

Navigation