Skip to main content
Log in

Frictional Energy Dissipation due to Phonon Resonance in Two-Layer Graphene System

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The frictional energy dissipation mechanism of a supported two-layer graphene film under the excitation of the model washboard frequency is investigated by molecular dynamics simulations. The results show that two local maxima in the energy dissipation rate occur at special frequencies as the excitation frequency increases from 0.1 to 0.6 THz. By extracting the vibrational density of states of the graphene, it is found that large numbers of phonons with frequencies equal to the excitation frequency are produced. A two-degree of freedom mass-spring model is proposed to explain the molecular dynamics results. Since the washboard frequency for atomically surfaces in wearless dry friction can be analogous to the excitation frequency in the molecular dynamics simulations, our study indicates that the phonon resonance would occur once the washboard frequency is close to the natural frequency of the frictional system, leading to remarkable local maxima in energy dissipation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data, models, or code generated or used during the study are available from the corresponding author by reasonable request.

References

  1. Baumberger, T., Berthoud, P., Caroli, C.: Physical analysis of the state- and rate-dependent friction law II. Dynamic friction. Phys. Rev. B 60, 3928–3939 (1999)

    Article  CAS  Google Scholar 

  2. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44, 367–386 (2011)

    Article  CAS  Google Scholar 

  3. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Guntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  CAS  Google Scholar 

  4. Granato, E., Ying, S.C.: Non-monotonic velocity dependence of atomic friction. Tribol. Lett. 39, 229–233 (2010)

    Article  Google Scholar 

  5. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  6. Vazirisereshk, M.R., Hasz, K., Carpick, R.W., Martini, A.: Friction anisotropy of MoS2: effect of tip-sample contact quality. J. Phys. Chem. Lett. 11, 6900–6906 (2020)

    Article  CAS  Google Scholar 

  7. Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27, 6862–6867 (2011)

    Article  CAS  Google Scholar 

  8. Ma, T.-B., Hu, Y.-Z., Wang, H.: Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon 47, 1953–1957 (2009)

    Article  CAS  Google Scholar 

  9. Israelachvili, J.N.: Intermolecular and surface force. Academic Press (2011)

    Google Scholar 

  10. Lewis, S.P., Pykhtin, M.V., Mele, E.J., Rappe, A.M.: Continuum elastic theory of adsorbate vibrational relaxation. J. Chem. Phys. 108, 1157–1161 (1998)

    Article  CAS  Google Scholar 

  11. Persson, B.N.J., Ryberg, R.: Brownian-motion and vibrational phase relaxation at surfaces-Co on Ni(111). Phys. Rev. B 32, 3586–3596 (1985)

    Article  CAS  Google Scholar 

  12. Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)

    Article  CAS  Google Scholar 

  13. Daly, C., Krim, J.: Sliding friction of solid xenon monolayers and bilayers on Ag(111). Phys. Rev. Lett 76, 803 (1996)

    Article  CAS  Google Scholar 

  14. Kisiel, M., Gnecco, E., Gysin, U., Marot, L., Rast, S., Meyer, E.: Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 10, 119–122 (2011)

    Article  CAS  Google Scholar 

  15. Bruch, L.W.: Ohmic damping of center-of-mass oscillations of a molecular monolayer. Phys. Rev. B 61, 16201–16206 (2000)

    Article  CAS  Google Scholar 

  16. Hu, R., Krylov, S.Y., Frenken, J.W.M.: On the origin of frictional energy dissipation. Tribol. Lett. 68, 8 (2019)

    Article  Google Scholar 

  17. Wei, Z., Duan, Z., Kan, Y., Zhang, Y., Chen, Y.: Phonon energy dissipation in friction between graphene/graphene interface. J. Appl. Phys. 127, 015105 (2020)

    Article  CAS  Google Scholar 

  18. Cammarata, A., Nicolini, P., Simonovic, K., Ukraintsev, E., Polcar, T.: Atomic-scale design of friction and energy dissipation. Phys. Rev. B 99, 094303 (2019)

    Article  Google Scholar 

  19. Tangney, P., Cohen, M.L., Louie, S.G.: Giant wave-drag enhancement of friction in sliding carbon nanotubes. Phys. Rev. Lett. 97, 195901 (2006)

    Article  Google Scholar 

  20. Panizon, E., Santoro, G.E., Tosatti, E., Riva, G., Manini, N.: Analytic understanding and control of dynamical friction. Phys. Rev. B 97, 104104 (2018)

    Article  CAS  Google Scholar 

  21. Duan, Z., Wei, Z., Huang, S., Wang, Y., Sun, C., Tao, Y., Dong, Y., Yang, J., Zhang, Y., Kan, Y., Li, D., Chen, Y.: Resonance in atomic-scale sliding friction. Nano Lett. 21, 4615–4621 (2021)

    Article  CAS  Google Scholar 

  22. Krim, J., Solina, D.H., Chiarello, R.: Nanotribology of a Kr monolayer-a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181–184 (1991)

    Article  CAS  Google Scholar 

  23. Wada, N., Ishikawa, M., Shiga, T., Shiomi, J., Suzuki, M., Miura, K.: Superlubrication by phonon confinement. Phys. Rev. B 97, 161403(R) (2018)

    Article  Google Scholar 

  24. Maldovan, M.: Sound and heat revolutions in phononics. Nature 503, 209–217 (2013)

    Article  CAS  Google Scholar 

  25. Braun, O.M., Peyrard, M., Bortolani, V., Franchini, A., Vanossi, A.: Transition from smooth sliding to stick-slip motion in a single frictional contact. Phys. Rev. E 72, 056116 (2005)

    Article  CAS  Google Scholar 

  26. Sokoloff, J.B.: Possible nearly frictionless sliding for mesoscopic solids. Phys. Rev. Lett. 71, 3450–3453 (1993)

    Article  CAS  Google Scholar 

  27. Takamura, M., Okamoto, H., Furukawa, K., Yamaguchi, H., Hibino, H.: Energy dissipation in edged and edgeless graphene mechanical resonators. J. Appl. Phys. 116, 064304 (2014)

    Article  Google Scholar 

  28. Luo, G., Zhang, Z.Z., Deng, G.W., Li, H.O., Cao, G., Xiao, M., Guo, G.C., Tian, L., Guo, G.P.: Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nat. Commun. 9, 383 (2018)

    Article  Google Scholar 

  29. Lindsay, L., Broido, D.A.: Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Article  Google Scholar 

  30. Wei, Z., Yang, J., Chen, W., Bi, K., Li, D., Chen, Y.: Phonon mean free path of graphite along the c-axis. Appl. Phys. Lett. 104, 081903 (2014)

    Article  Google Scholar 

  31. Sokhan, V.P., Nicholson, D., Quirke, N.: Phonon spectra in model carbon nanotubes. J. Chem. Phys. 113, 2007–2015 (2000)

    Article  CAS  Google Scholar 

  32. Dong, Y., Wang, Y., Duan, Z., Huang, S., Tao, Y., Lu, X., Zhang, Y., Kan, Y., Wei, Z., Li, D., Chen, Y.: Phononic origin of structural lubrication. Friction (2022). https://doi.org/10.1007/s40544-022-0636-3

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China (NO.52175161, NO. 51605090, NO.51575104), and the Southeast University “Zhongying Young Scholars” Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Wei or Yunfei Chen.

Ethics declarations

Conflict of interest

All authors declare that No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Tao, Y., Lu, X. et al. Frictional Energy Dissipation due to Phonon Resonance in Two-Layer Graphene System. Tribol Lett 70, 113 (2022). https://doi.org/10.1007/s11249-022-01654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01654-8

Keywords

Navigation