Skip to main content
Log in

Non-Monotonic Velocity Dependence of Atomic Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We study the velocity dependence of the frictional force of the tip of an atomic force microscope as it is dragged across a surface, taking into account memory effects and thermal fluctuations. Memory effects are described by a coupling of the tip to low frequency excitation modes of the surface in addition to the coupling to the periodic corrugation potential. We find that when the excitation mode frequency is comparable to the characteristic frequency corresponding to the motion of the tip across the surface, the velocity dependence of the frictional force is non-monotonic, displaying a velocity range where the frictional force can decrease with increasing velocity. These results provide theoretical support for the interpretation of recent experiments which find a frictional force that decreases with velocity on surfaces covered with a monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Heidelberg (1998)

    Google Scholar 

  2. Gnecco E., Bennevitz, R., Gyalog, T., Loppacher, Ch., Hammerlin, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Riedo, E., Lévy, F., Brune, H.: Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. 88, 185505 (2002)

    Article  ADS  PubMed  Google Scholar 

  6. Chen, J., Ratera, I., Park, J.Y., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 236102 (2006)

    Article  ADS  Google Scholar 

  7. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Muser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Article  Google Scholar 

  9. Reimann, P., Evstigneev, M.: Nonmonotonic velocity dependence of atomic friction. Phys. Rev. Lett. 93, 230802 (2004)

    Article  ADS  PubMed  Google Scholar 

  10. Cuccetti, A., Ying, S.C.: Memory effects in the frictional damping of diffusive and vibrational motion of adatoms. Phys. Rev. B 54, 3300–3310 (1996)

    Article  ADS  Google Scholar 

  11. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank T. Ala-Nissila for helpful discussions and suggestions. E.G. was supported by Fundação de Amparo á Pesquisa do Estado de São Paulo - FAPESP (Grant No. 07/08492-9). S.C.Y. also acknowledges FAPESP (Grant No. 09/01942-4) for supporting a visit to Instituto Nacional de Pesquisas Espaciais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Granato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granato, E., Ying, S.C. Non-Monotonic Velocity Dependence of Atomic Friction. Tribol Lett 39, 229–233 (2010). https://doi.org/10.1007/s11249-010-9595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9595-3

Keywords

Navigation