Skip to main content

A Boundary Lubrication Model and Experimental Study Considering ZDDP Tribofilms on Reciprocating Friction Pairs

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Boundary lubrication state may dominate the friction pairs operating under severe conditions, yet its mechanism is not clearly understood and related numerical models are still lacking. A boundary lubrication model considering zinc dialkyldithiophosphate (ZDDP) tribofilms, which impact friction and wear performances, was developed in this study. A series of reciprocating experiments were conducted to verify this model and also to investigate the effects of the tribofilm on friction and wear under various temperatures and loads. Moreover, the experimental data were employed to modify the tribofilm removal equation, which enabled the present boundary lubrication model to be applied under a wide range of loads. The results showed that the friction force and wear depth both decline with the increasing lubricant temperature due to thicker tribofilms formed. As the load becomes heavier, the wear depth keeps increasing, while the tribofilm thickness first increases then decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, J., Meng, Y.: Boundary lubrication by adsorption film. Friction 3, 115–147 (2015)

    Article  Google Scholar 

  2. Lyu, B., Meng, X., Zhang, R., Wen, C.: A deterministic contact evolution and scuffing failure analysis considering lubrication deterioration due to temperature rise under heavy loads. Eng. Fail. Anal. 123, 105276 (2021)

    Article  Google Scholar 

  3. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)

    Article  CAS  Google Scholar 

  4. Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 1–15 (2016)

    Article  CAS  Google Scholar 

  5. Fujita, H., Spikes, H.A.: The formation of zinc dithiophosphate antiwear films. Proc. Inst. Mech. Eng. J: J. Eng. Trib. 218, 265–278 (2004)

    Article  CAS  Google Scholar 

  6. Westerfield, C., Agnew, S.: IR study of the chemistry of boundary lubrication with high temperature and high pressure shear. Wear 181, 805–809 (1995)

    Article  Google Scholar 

  7. Gosvami, N., Bares, J., Mangolini, F., Konicek, A., Yablon, D., Carpick, R.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)

    Article  CAS  Google Scholar 

  8. Zhang, J., Ewen, J.P., Ueda, M., Wong, J.S., Spikes, H.A.: Mechanochemistry of zinc dialkyldithiophosphate on steel surfaces under elastohydrodynamic lubrication conditions. ACS Appl. Mater. Interfaces 12, 6662–6676 (2020)

    Article  CAS  Google Scholar 

  9. Zhang, J., Ueda, M., Campen, S., Spikes, H.: Boundary friction of ZDDP tribofilms. Tribol. Lett. 69, 1–17 (2021)

    CAS  Google Scholar 

  10. Pagkalis, K., Spikes, H., Jelita Rydel, J., Ingram, M., Kadiric, A.: The influence of steel composition on the formation and effectiveness of anti-wear films in tribological contacts. Tribol. Lett. 69, 75 (2021)

    Article  CAS  Google Scholar 

  11. Ueda, M., Spikes, H., Kadiric, A.: In-situ observations of the effect of the ZDDP tribofilm growth on micropitting. Tribol. Int. 138, 342–352 (2019)

    Article  CAS  Google Scholar 

  12. Kontou, A., Taylor, R.I., Spikes, H.A.: Effects of dispersant and ZDDP additives on fretting wear. Tribol. Lett. 69, 6 (2020)

    Article  Google Scholar 

  13. Ghanbarzadeh, A., Parsaeian, P., Morina, A., Wilson, M.C., van Eijk, M.C., Nedelcu, I., et al.: A semi-deterministic wear model considering the effect of zinc dialkyl dithiophosphate tribofilm. Tribol. Lett. 61, 1–15 (2016)

    Article  Google Scholar 

  14. Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  15. Akchurin, A., Bosman, R.: A deterministic stress-activated model for tribo-film growth and wear simulation. Tribol. Lett. 65, 59 (2017)

    Article  CAS  Google Scholar 

  16. Azam, A., Ghanbarzadeh, A., Neville, A., Morina, A., Wilson, M.C.: Modelling tribochemistry in the mixed lubrication regime. Tribol. Int. 132, 265–274 (2019)

    Article  CAS  Google Scholar 

  17. Chen, Z., Gu, C., Tian, T.: Modeling of formation and removal of ZDDP tribofilm on rough surfaces. Tribol. Lett. 69, 1–9 (2021)

    Article  CAS  Google Scholar 

  18. Hardy, W.B., Doubleday, I.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. Ser. A 100, 550–574 (1922)

    Article  CAS  Google Scholar 

  19. Buyanovskii, I.: Boundary lubrication by an adsorption layer. J. Frict. Wear 31, 33–47 (2010)

    Article  Google Scholar 

  20. Greenwood, J., Tripp, J.: The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 185, 625–633 (1970)

    Article  Google Scholar 

  21. Pereira, G., Munoz-Paniagua, D., Lachenwitzer, A., Kasrai, M., Norton, P.R., Capehart, T.W., et al.: A variable temperature mechanical analysis of ZDDP-derived antiwear films formed on 52100 steel. Wear 262, 461–470 (2007)

    Article  CAS  Google Scholar 

  22. Patir, N., Cheng, H.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100, 12–17 (1978)

    Article  Google Scholar 

  23. Roelands, C.J.A., Winer, W.O., Wright, W.A.: Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils(Dr In dissertation at Technical University of Delft, 1966). J. Lubr. Technol. 93, 209–210 (1971)

    Article  Google Scholar 

  24. Bowden, F.P., Leben, L.: The friction of lubricated metals. Philos. Trans. R. Soc. Lond. Ser. A 239, 1–27 (1940)

    Article  Google Scholar 

  25. Bowden, F.P., Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford (2001)

    Google Scholar 

  26. Roshan, R., Priest, M., Neville, A., Morina, A., Xia, X., Warrens, C.P., et al.: Friction modelling in boundary lubrication considering the effect of MoDTC and ZDDP in engine oils. Tribol. Online 6, 301–310 (2011)

    Article  Google Scholar 

  27. Patir, N., Cheng, H.: Application of average flow model to lubrication between rough sliding surfaces. J. Lubr. Technol. 101, 220–229 (1979)

    Article  Google Scholar 

  28. Pasaribu, H., Lugt, P.M.: The composition of reaction layers on rolling bearings lubricated with gear oils and its correlation with rolling bearing performance. Tribol. Trans. 55, 351–356 (2012)

    Article  CAS  Google Scholar 

  29. Nehme, G., Mourhatch, R., Aswath, P.B.: Effect of contact load and lubricant volume on the properties of tribofilms formed under boundary lubrication in a fully formulated oil under extreme load conditions. Wear 268, 1129–1147 (2010)

    Article  CAS  Google Scholar 

  30. Ueda, M., Kadiric, A., Spikes, H.: Influence of steel surface composition on ZDDP tribofilm growth using ion implantation. Tribol. Lett. 69, 62 (2021)

    Article  CAS  Google Scholar 

  31. Ngo, D., He, X., Luo, H., Qu, J., Kim, S.H.: Competitive adsorption of ionic liquids versus friction modifier and anti-wear additive at solid/lubricant interface—speciation with vibrational sum frequency generation spectroscopy. Lubricants 8, 98 (2020)

    Article  Google Scholar 

  32. Fujita, H., Glovnea, R., Spikes, H.: Study of zinc dialkydithiophosphate antiwear film formation and removal processes, part I: experimental. Tribol. Trans. 48, 558–566 (2005)

    Article  CAS  Google Scholar 

  33. Bayat, R., Lehtovaara, A.: Tribofilm formation of simulated gear contact along the line of action. Tribol. Lett. 69, 1–11 (2021)

    Article  Google Scholar 

  34. Bec, S., Tonck, A., Georges, J.M., Coy, R.C., Bell, J.C., Roper, G.W.: Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 455, 4181–4203 (1999)

    Article  CAS  Google Scholar 

  35. Aktary, M., McDermott, M.T., McAlpine, G.A.: Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time. Tribol. Lett. 12, 155–162 (2002)

    Article  CAS  Google Scholar 

  36. Taylor, R.I.: Tribology and energy efficiency: from molecules to lubricated contacts to complete machines. Faraday Discuss. 156, 361–382 (2012)

    Article  CAS  Google Scholar 

  37. Demmou, K., Bec, S., Loubet, J.-L., Martin, J.-M.: Temperature effects on mechanical properties of zinc dithiophosphate tribofilms. Tribol. Int. 39, 1558–1563 (2006)

    Article  CAS  Google Scholar 

  38. Tse, J.S., Song, Y., Liu, Z.: Effects of temperature and pressure on ZDDP. Tribol. Lett. 28, 45–49 (2007)

    Article  CAS  Google Scholar 

  39. Bosman, R., Schipper, D.J.: Mild wear prediction of boundary-lubricated contacts. Tribol. Lett. 42, 169–178 (2011)

    Article  CAS  Google Scholar 

  40. Demmou, K., Bec, S., Loubet, J.-L.: Effect of hydrostatic pressure on elastic properties of ZDTP tribofilms. arXiv preprint arXiv:07064235. https://arxiv.org/ftp/arxiv/papers/0706/0706.4235.pdf (2007)

  41. Salinas Ruiz, V.R., Kuwahara, T., Galipaud, J., Masenelli-Varlot, K., Hassine, M.B., Héau, C., et al.: Interplay of mechanics and chemistry governs wear of diamond-like carbon coatings interacting with ZDDP-additivated lubricants. Nat. Commun. 12, 1–15 (2021)

    Article  CAS  Google Scholar 

  42. Bosman, R., de Rooij, M.B.: Transient thermal effects and heat partition in sliding contacts. J. Tribol. (2010). https://doi.org/10.1115/1.4000693

    Article  Google Scholar 

  43. Al Sheikh Omar, A., Salehi, F.M., Farooq, U., Neville, A., Morina, A.: Effect of zinc dialkyl dithiophosphate replenishment on tribological performance of heavy-duty diesel engine oil. Tribol. Lett. 70, 24 (2022)

    Article  CAS  Google Scholar 

  44. Bai, L., Meng, Y., Zhang, V., Khan, Z.A.: Effect of surface topography on ZDDP tribofilm formation during running-in stage subject to boundary lubrication. Tribol. Lett. 70, 10 (2021)

    Article  Google Scholar 

  45. Ueda, M., Kadiric, A., Spikes, H.: Influence of steel surface composition on ZDDP tribofilm growth using ion implantation. Tribol. Lett. 69, 1–14 (2021)

    Article  CAS  Google Scholar 

  46. Xu, D., Wang, C., Espejo, C., Wang, J., et al.: Understanding the friction reduction mechanism based on the molybdenum disulfide tribofilm formation and removal. Langmuir 34, 13523–13533 (2018)

    Article  CAS  Google Scholar 

  47. Mittal, P., Rai, H., Gosvami, N.N.: Microscopic tribology of ADC12 alloy under lubricant containing ZDDP and MoDTC using in situ AFM. Tribol. Lett. 69, 35 (2021)

    Article  CAS  Google Scholar 

  48. Rydel, J.J., Pagkalis, K., Kadiric, A., Rivera-Díaz-del-Castillo, P.E.J.: The correlation between ZDDP tribofilm morphology and the microstructure of steel. Tribol. Int. 113, 13–25 (2016)

    Article  CAS  Google Scholar 

  49. Rydel, J.J., Vegter, R., Rivera-Díaz-del-Castillo, P.: Tribochemistry of bearing steels: a new AFM method to study the material–tribofilm correlation. Tribol. Int. 98, 74–81 (2016)

    Article  CAS  Google Scholar 

  50. Cyriac, F., Yi, T.X., Poornachary, S.K., Chow, P.S.: Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces. Tribol. Int. 164, 107199 (2021)

    Article  CAS  Google Scholar 

  51. Dawczyk, J., Morgan, N., Russo, J., Spikes, H.: Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 67, 1–15 (2019)

    Article  CAS  Google Scholar 

  52. Azam, A., Dorgham, A., Parsaeian, P., Morina, A., Neville, A., Wilson, M.C.: The mutual interaction between tribochemistry and lubrication: interfacial mechanics of tribofilm. Tribol. Int. 135, 161–169 (2019)

    Article  CAS  Google Scholar 

  53. Zhao, Y., Geng, Z., Li, D., Wang, L., Lu, Z., Zhang, G.: An investigation on the tribological properties of graphene and ZDDP as additives in PAO4 oil. Diam. Relat. Mater. 120, 108635 (2021)

    Article  CAS  Google Scholar 

  54. Spikes, H.: Stress-augmented thermal activation: tribology feels the force. Friction 6, 1–31 (2018)

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (52130502, 51875344) and the stable support project for basic military research institutes (WDZC-2019-JGKK-03).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, BL, LZ, and XM; data curation, BL, LZ, and XM; formal analysis, BL; funding acquisition, XM; investigation, BL and LZ; experiment, BL; software, BL; supervision, XM and CW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xianghui Meng.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship and/or publication of this article, and we have fully respected the research ethics principles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B., Zhang, L., Meng, X. et al. A Boundary Lubrication Model and Experimental Study Considering ZDDP Tribofilms on Reciprocating Friction Pairs. Tribol Lett 70, 65 (2022). https://doi.org/10.1007/s11249-022-01607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01607-1

Keywords

Navigation