Skip to main content
Log in

Short Chain Imidazolium Ionic Liquids: Synthesis and Oil Miscibility in Various Base Oil by use of Surfactant as High Performance Friction and Antiwear Lubricant Additive

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The short chain ILs [BMIM] Oleate and [BMIM] Phosphate were explored as lubricant additives in both polar and non-polar base oils through using the multifunctional surfactants Triton-x-100 and PIBSA respectively. The formulations were stable and showed significant reductions in friction and wear compared with the base oil alone, the [BMIM] Phosphate Triton-x-100 in the Group V base oil showed a 63% reduction in wear scar diameter similar to [BMIM] Phosphate PIBSA in the Group III base oil, and a 44% reduction in coefficient of friction which was superior to all others IL additive blends which showed evidence of tribo-chemical reactions on the steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bart, J.C.J., Gucciardi, E., Cavallaro, S.: Biolubricants, pp. 824–846. Woodhead Publishing, Sawston (2013)

    Google Scholar 

  2. Bridges, N.J., Rogers, R.D., Visser, A.E., American Chemical Society: Ionic Liquids: Science and Applications. Oxford University Press, Oxford (2013)

    Google Scholar 

  3. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, New York (2008)

    Google Scholar 

  4. Kumari, M., Maurya, J.K., Tasleem, M., Singh, P., Patel, R.: Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods. J. Photochem. Photobiol. B Biol. 138, 27–35 (2014)

    Article  CAS  Google Scholar 

  5. Pal, A., Punia, R.: Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium. Colloid Polym. Sci. 297, 1011–1024 (2019)

    Article  CAS  Google Scholar 

  6. Parmar, A., Aswal, V., Bahadur, P.: Interaction between the ionic liquids 1-alkyl-3-methylimidazolium tetrafluoroborate and Pluronic® P103 in aqueous solution: a DLS, SANS and NMR study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 137–143 (2012)

    Article  CAS  Google Scholar 

  7. Sutto, T.E.: Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J. Electrochem. Soc. 154, P101–P107 (2007)

    Article  CAS  Google Scholar 

  8. Thakkar, K., Bharatiya, B., Shah, D.O., Ray, D., Aswal, V.K., Bahadur, P.: Interaction of ionic liquid type cationic surfactants with triton X-100 nonionic micelles. Colloids Surf. A 484, 547–557 (2015)

    Article  CAS  Google Scholar 

  9. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Li, H., Blau, P.J., Bunting, B.G., Mordukhovich, G.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces. 4, 997–1002 (2012)

    Article  CAS  Google Scholar 

  10. Xiao, H.: Ionic liquid lubricants: basics and applications. Tribol. Trans. 60, 20–30 (2017)

    Article  CAS  Google Scholar 

  11. Srour, H., Rouault, H., Santini, C.C., Chauvin, Y.: A silver and water free metathesis reaction: a route to ionic liquids. Green Chem. 15, 1341–1347 (2013)

    Article  CAS  Google Scholar 

  12. Kasrai, M., Cutler, J., Gore, K., Canning, G., Bancroft, G., Tan, K.: The chemistry of antiwear films generated by the combination of ZDDP and MoDTC examined by X-ray absorption spectroscopy. Tribol. Trans. 41, 69–77 (1998)

    Article  CAS  Google Scholar 

  13. Morina, A., Neville, A., Priest, M., Green, J.: ZDDP and MoDTC interactions in boundary lubrication—The effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39, 1545–1557 (2006)

    Article  CAS  Google Scholar 

  14. Morina, A., Neville, A., Priest, M., Green, J.: ZDDP and MoDTC interactions and their effect on tribological performance—Tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  CAS  Google Scholar 

  15. Somers, A., Howlett, P., MacFarlane, D., Forsyth, M.: A review of ionic liquid lubricants. Lubricants 1, 3 (2013)

    Article  Google Scholar 

  16. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces. 9, 3209–3222 (2017)

    Article  CAS  Google Scholar 

  17. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Li, H., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces. 4, 997–1002 (2012)

    Article  CAS  Google Scholar 

  18. Somers, A.E., Khemchandani, B., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum. ACS Appl. Mater. Interfaces. 5, 11544–11553 (2013)

    Article  CAS  Google Scholar 

  19. Sun, Y.-X., Wang, Y.-Y., Shen, B.-B., Zhang, B.-X., Hu, X.-M.: Synthesis and investigation of physico-chemical properties of dicationic ionic liquids. R. Soc. Open Sci. 5, 181230 (2018)

    Article  CAS  Google Scholar 

  20. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)

    Article  CAS  Google Scholar 

  21. Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z.: Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear 256, 44–48 (2004)

    Article  CAS  Google Scholar 

  22. Lu, Q., Wang, H., Ye, C., Liu, W., Xue, Q.: Room temperature ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact. Tribol. Int. 37, 547–552 (2004)

    Article  CAS  Google Scholar 

  23. Zhang, L., Feng, D., Xu, B.: Tribological characteristics of alkylimidazolium diethyl phosphates ionic liquids as lubricants for steel–steel contact. Tribol. Lett. 34, 95–101 (2009)

    Article  CAS  Google Scholar 

  24. Jiménez, A., Bermúdez, M., Iglesias, P., Carrión, F., Martínez-Nicolás, G.: 1-N-alkyl -3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel–aluminium contacts. Wear 260, 766–782 (2006)

    Article  CAS  Google Scholar 

  25. Amorim, P.M., Ferraria, A.M., Colaço, R., Branco, L.C., Saramago, B.: Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces. Beilstein J. Nanotechnol. 8, 1961–1971 (2017)

    Article  CAS  Google Scholar 

  26. Cai, M., Liang, Y., Yao, M., Xia, Y., Zhou, F., Liu, W.: Imidazolium ionic liquids as antiwear and antioxidant additive in Poly(ethylene glycol) for steel/steel contacts. ACS Appl. Mater. Interfaces 2, 870–876 (2010)

    Article  CAS  Google Scholar 

  27. Kirchner, B.: Ionic Liquids, pp. 213–262. Springer, Berlin (2008)

    Book  Google Scholar 

  28. García, A., González, R., Battez, A.H., Viesca, J., Monge, R., Fernández-González, A., Hadfield, M.: Ionic liquids as a neat lubricant applied to steel–steel contacts. Tribol. Int. 72, 42–50 (2014)

    Article  CAS  Google Scholar 

  29. Pandey, P., Somers, A.E., Hait, S.K., Forsyth, M., Ramakumar, S.S.V.: A novel approach to improve the oil miscibility and incorporate multifunctionality in ionic liquids as lubricant additives. Phys. Chem. Chem. Phys. 23, 3429 (2021)

    Article  CAS  Google Scholar 

  30. Pandey, P., Somers, A.E., Hait, S.K., Forsyth, M., Ramakumar, S.S.V.: Study of phosphonium based ionic liquid/dispersant additive interactions using spectroscopic technique for lubricant applications. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116665

    Article  Google Scholar 

  31. Batıgöç, Ç., Akbaş, H., Boz, M.: Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point. J. Chem. Thermodyn. 43, 1800–1803 (2011)

    CAS  Google Scholar 

  32. Rajathi, K., Rajendran, A.: Synthesis, characterization and biological evaluation of imidazolium based ionic liquids. Res. Rev. J. Chem. 2, 36 (2013)

    CAS  Google Scholar 

  33. Williamson, C.L., Maly, K.E., MacNeil, S.L.: Synthesis of imidazolium room-temperature ionic liquids: a follow-up to the procedure of Dzyuba, Kollar, and Sabnis. J. Chem. Educ. 90, 799–801 (2013)

    Article  CAS  Google Scholar 

  34. Khatri, O. P., Gusain, R.: Halogen free ionic liquids as lubricant or lubricant additives and a process for the preparation thereof. US20170096614A1 (2017)

  35. Rajkumar, T., Rao, G.R.: Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Mater. Chem. Phys. 112, 853–857 (2008)

    Article  CAS  Google Scholar 

  36. Berzina-Cimdina, L., Borodajenko, N.: Research of calcium phosphates using Fourier transform infrared spectroscopy. Infrared Spectrosc. Mater. Sci. Eng. Technol. 12(7), 251–263 (2012)

    Google Scholar 

  37. Labidi, N.S., Iddou, A.: Adsorption of oleic acid on quartz/water interface. J. Saudi Chem. Soc. 11, 221–234 (2007)

    CAS  Google Scholar 

  38. Beliciu, C., Moraru, C.: Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering. J. Dairy Sci. 92, 1829–1839 (2009)

    Article  CAS  Google Scholar 

  39. Darabi, L., Zare, M.: Theoretical study on the structure and electronic properties of alkylimidazolium iodide ionic liquids: the effect of alkyl chain length. New J. Chem. 44, 4023–4032 (2020)

    Article  CAS  Google Scholar 

  40. Marx, N., Fernández, L., Barceló, F., Spikes, H.: Shear thinning and hydrodynamic friction of viscosity modifier-containing oils. Part I: shear thinning behaviour. Tribol. Lett. 66, 92 (2018)

    Article  CAS  Google Scholar 

  41. Spikes, H.A.: Film-forming additives—direct and indirect ways to reduce friction. Lubr. Sci. 14, 147–167 (2002)

    Article  CAS  Google Scholar 

  42. Ye, Q., Liu, S., Zhang, J., Xu, F., Zhou, F., Liu, W.: Superior lubricity and antiwear performances enabled by porous carbon nanospheres with different shell microstructures. ACS Sustain. Chem. Eng. 7(14), 12527–12535 (2019)

    CAS  Google Scholar 

  43. Minami, I.: Ionic liquids in tribology. Molecules 14, 2286 (2009)

    Article  CAS  Google Scholar 

  44. Khan, A., Gusain, R., Khatri, O.P.: Organophosphate anion based low viscosity ionic liquids as oil-miscible additives for lubrication enhancement. J. Mol. Liquids 272, 430–438 (2018)

    Article  CAS  Google Scholar 

  45. Ghatee, M.H., Zare, M., Moosavi, F., Zolghadr, A.R.: Temperature-dependent density and viscosity of the ionic liquids 1-Alkyl-3-methylimidazolium Iodides: experiment and molecular dynamics simulation. J. Chem. Eng. Data 55, 3084–3088 (2010)

    Article  CAS  Google Scholar 

  46. Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)

    Article  CAS  Google Scholar 

  47. Grossiord, C., Martin, J.M., Varlot, K., Vacher, B., Le Mogne, T., Yamada, Y.: Tribochemical interactions between Zndtp, Modtc and calcium borate. Tribol. Lett. 8, 203–212 (2000)

    Article  CAS  Google Scholar 

  48. Pulles, T., van der Gon, H.D., Appelman, W., Verheul, M.: Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 61, 641–651 (2012)

    Article  CAS  Google Scholar 

  49. Yang, H., Guo, R., Wang, H.J.C.: Lubrication of the mixed system of Triton X-100/n-C10H21OH/H2O lamellar liquid crystal and ZnS nanoparticles. Colloids Surf. Physicochem Eng. Aspects 180, 243–251 (2001)

    Article  CAS  Google Scholar 

  50. Kontou, A., Southby, M., Morgan, N., Spikes, H.: The role of the Counterbody’s oxide on the wear behavior of HSS and Hi-Cr. Tribol. Lett. 66, 1–15 (2018)

    Article  CAS  Google Scholar 

  51. Gusain, R., Khatri, O.P.: Fatty acid ionic liquids as environmentally friendly lubricants for low friction and wear. RSC Adv. 6, 3462–3469 (2016)

    Article  CAS  Google Scholar 

  52. Cao, H., Hu, Y., Xu, W., Wang, Y., Guo, X.: Recent progress in the assembly behavior of imidazolium-based ionic liquid surfactants. J. Mol. Liquids 319, 114354 (2020)

    Article  CAS  Google Scholar 

  53. Somers, A.E., Biddulph, S.M., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Phys. Chem. Chem. Phys. 14, 8224–8231 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the management of Indian Oil Corporation Ltd Research & Development Centre and Deakin University for granting fellowship under Deakin-India Research Fellowship Programme and providing permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Pandey.

Ethics declarations

Conflict of interest

There are no known conflicts of interest and competing financial interests that could have influence on the work reported here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Somers, A.E., Hait, S.K. et al. Short Chain Imidazolium Ionic Liquids: Synthesis and Oil Miscibility in Various Base Oil by use of Surfactant as High Performance Friction and Antiwear Lubricant Additive. Tribol Lett 69, 95 (2021). https://doi.org/10.1007/s11249-021-01472-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01472-4

Keywords

Navigation